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1.  Introduction

Consider the data generating process Yi = 0 + 1Xi + i , where i is independently and identically distributed N(0,).

Given a realization of n observations in X,Y pairs, called the sample, the goal is to estimate the parameters, 0 and 1.  This is usually done by fitting a line to the observations in the sample and using the fitted line’s intercept, b0, and slope, b1, as the parameter estimates.  Ordinary Least Squares (OLS or LS) fits the line by finding the intercept and slope that minimize the sum of squared residuals (SSR) is found.  More formally, the optimization problem looks like this:
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Analytical solutions for the intercept and slope choice variables are easily calculated.

“Legendre called it the method of least squares, and it became a cornerstone of statistics.  But in spite of its mathematical beauty and computational simplicity, this estimator is now being criticized more and more for its dramatic lack of robustness.”  Rousseeuw [1984, p. 871]

Synonyms for the word robust include vigorous, sturdy, and stout.  Robust regression emphasizes a regression algorithm’s ability to withstand stress.   Least squares performs poorly in terms of robustness because a single, aberrant data point, or outlier, can throw the fitted line way off. 
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Figure 1.1: Sensitivity of LS to a Single Outlier
In the example above, the data are the same except for the last Y observation.  In the Dirty data set, Y11 equals its clean value plus the Outlier Factor of 100.  This pulls the fitted line up, almost doubling its slope, and, therefore, poorly estimates the slope parameter.  

The smallest percentage of bad data that can cause the fitted line to explode is defined as the breakdown point.  Since a single bad data point can destroy the least squares line, LS is said to have a zero breakdown point.  Thus, least squares is not a robust regression procedure.

We can explore the properties of the LS estimator via Monte Carlo simulation.  The results convincingly demonstrate that LS with Dirty data performs badly.
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Figure 1.2: Monte Carlo Simulation of LS Slope Estimator with Clean and Dirty Data
Click the [image: image4.wmf]Show Clean v Dirty 

LS 

Monte Carlo Simulation

 button in the Live sheet of the LMS.xls workbook to run your own simulation.  The LSMCSim sheet uses parameters and Outlier Factor information taken from the Live sheet.  This information is used to generate two new samples of Clean and Dirty Y, from which new Clean and Dirty least squares slope estimates are calculated.  The process is repeated for as many repetitions as you request.  The first 100 slopes are listed and summary statistics with an accompanying histogram are provided for all of the slopes generated by the simulation.  

Run the simulation again as many times as you wish.  Use the [image: image5.wmf]Take A 

Picture

 button to compare results. Explore the effects of changing the Outlier Factor (or other parameters) in the Live sheet. You will find that the bias of the least squares estimator increases as the outlier factor increases.  Click the [image: image6.wmf]Make Y6 the 

Outlier

 button to change the outlier from Y11 to Y6.  The bias isn’t as bad when the outlier is in the center of the data.  Click the [image: image7.wmf]Make Y11 the 

Outlier

 button to return the outlier to its initial, Y11 position.

Mount, et al. [1997] provide a nice real-world example of the problems associated with using least squares on dirty data.  They are interested in computer vision.
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The picture to the left is an aerial photograph of a road (the thick black line) with other objects scattered about. 

In panel (b), a least squares fit has been superimposed.  Notice how the points in the lower left-hand corner of the picture drag the least squares line down.  The road is not captured well by the white line.

Panel (c) also fits a line, but it is not based on the usual least squares algorithm.  Instead of minimizing the sum of squared residuals, the chosen intercept and slope yield the least median of the squared residuals.  This approach is abbreviated as LMS.

Figure 1.3: Identifying the Road

The authors argue that this example “demonstrates the enhanced performance obtained by LMS versus OLS in detecting straight road segments in a noisy aerial image.”  

Of course, least squares would perform well if we simply threw out the outliers (point Y11 in the Dirty data set example or the points in the lower left-hand corner in the picture above).  In fact, this is exactly the strategy adopted by another robust estimator called Least Trimmed Squares, LTS.  A rule is applied to detect outliers and they are trimmed, i.e., deleted, from the data.   Determining what constitutes an outlier is controversial.  Since outlier detection and trimming would take us far afield, we will concentrate on the properties of LMS and how it compares to conventional least squares.

As we shall see, LMS is a less sensitive, or more robust, fitting technique than least squares.  It should come as no surprise that an estimator using the median would be less sensitive to extreme values than conventional least squares, which is related to the average.  The median of the list {1,2,3} is the same as the median of the list {1,2,100}, while the averages are quite different.  Similarly, the LMS line will not respond like the LS line to an outlier (like Y11).  It can be shown that LMS has the highest possible breakdown point of 50%—it is extremely resistant to contaminated data.  Unfortunately, as we shall see in the following sections, while LMS is quite robust to dirty data, it suffers from low precision. 

The next section will explain how the LMS line is determined.  The third section will explore the properties of the LMS estimator, focusing on the usual desiderata of accuracy and precision.  Monte Carlo simulations will be used to compare LS and LMS under various conditions.  The last section summarizes results and provides references for further work.

We present LMS, not as a panacea for dirty data, but as a way to better understand regression analyses in its varied forms.

2.  Fitting LMS

The first problem one faces when exploring Least Median of Squares regression is the actual calculation of the line.  It turns out that this is a rather challenging optimization problem. Although sophisticated software packages (such as SAS/IML) have routines that crank out the LMS line, effectively shielding the user from the complicated intricacies involved in calculating the coefficients, understanding what is involved in an LMS fit is valuable.

This section will briefly review the simple mechanics of ordinary least squares line fitting, then demonstrate the difficulties inherent in fitting a line with least median of squares.  

LS Review

A demonstration of how Excel’s Solver can be used to find the intercept and slope that minimize the sum of squared residuals can be found beginning in cell P1 of the sheet Dead in the workbook LMS.xls.
The surface of the sum of squared residuals as a function of the intercept and slope is a well-behaved bowl. Excel’s Solver, a generic optimization algorithm, has no problem finding the correct solution.
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Figure 2.1: SSR as a function of intercept and slope

In addition to the numerical optimization approach, there is, of course, an exact, analytical solution for the SSR-minimizing intercept and slope combination.  As we shall see in a moment, LMS fitting shares neither of these two properties with LS: (1) the surface is bumpy and full of local minima and (2) there is no closed-form solution to the problem.  This means that fitting an LMS line is complicated.

Fitting LMS

We begin by noting that minimizing the sum of squared residuals is equivalent to minimizing the mean of the squared residuals.  Dividing the SSR by the number of observations will give the average of the squared residuals and would rescale the z axis of the graph above without changing the minimum.
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As Rousseeuw [1984, p. 872] pointed out, “[M]ost people have tried to make this estimator robust by replacing the square by something else . . . Why not, however, replace the sum by a median, which is very robust?”  Formally, the Least Median of Squares fit is determined by solving the following optimization problem:
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Since LS is based on minimizing the sample mean and means are sensitive to extreme values, it makes sense that LMS, which replaces the mean by the much less sensitive median, will generate a more robust estimator.

While we are analyzing alternative objectives in fitting a line, it is important to keep in mind that the data generation process is not an issue here.  The model remains Yi = 0 + 1Xi + i , where i is independently and identically distributed N(0,).  The question is, which algorithm should we apply to the realized X,Y data points in order to best estimate the parameters?  We will compare the performance of the LS and LMS estimators in the next section, but first we have to compute the LMS fit itself.

Unlike LS, there is no closed form solution, or formula, with which to easily calculate the LMS line.  Since the median is an order or rank statistic, it is not amenable to calculation via derivatives or other calculations that rely on continuous functions.  For each intercept and slope, the squared residuals have to be calculated and sorted in order to determine the middle, or median, value.
  Brute force optimization with a generic algorithm like Excel’s Solver is an alternative to the analytical approach, but it turns out that the surface is so bumpy that merely local minima are often incorrectly reported as the solution.

Return to the Dead sheet in the LMS.xls workbook. Scroll over to cell AB1.  The cells are ready for you to use Solver to find a solution.  Note that the starting values for the intercept and slope are zero.  Run Solver, resetting the target and changing cell values in the Solver Dialog Box as needed.  Solver reports finding a successful solution.  Unfortunately, it is wrong.  

Change the intercept (AD6) and slope (AD7) cells to the LS solution, -0.37 and 5.4.  Run Solver using these new starting values.  Once again, Solver reports finding a solution and, once again, it is wrong.  In fact, depending on the initial values, brute force optimization via Solver will generate many incorrect solutions.  What’s going on?  Figure 2.2 demonstrates why Solver is having problems.
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Figure 2.2: Two Views of the Median Squared Residual as a function of Intercept and Slope

Instead of a smooth bowl-shape, the Median of Squared Residuals surface is full of indentations and depressions.
  Thus, a brute force optimization algorithm like Solver gets stuck easily in a local minimum.  Not surprisingly, Solver’s reported solution is heavily dependent on the initial starting values.

Although a closed-form solution is not available and brute force optimization is not reliable, several algorithms are available for fitting the LMS line.  Perhaps the most popular is called PROGRESS (from Program for RObust reGRESSion).  The program itself is explained in Rousseeuw and Leroy [1987] and an updated version is available at http://win-www.uia.ac.be/u/statis.

We have implemented a bivariate version that can be used from within Excel to fit the LMS line.  To fit an LMS line, return to the Dead data sheet in the LMS.xls workbook and scroll over to cell AK1.  Click the [image: image13.wmf]LMS Fit

 button in order to bring up the LMS Fit Dialog Box.  Input the X and Y data and choose an output option, then click OK.  Your results should look like this:
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Figure 2.3: LMS Fit Output

Since the sample in the Dead sheet was generated by the process in the Live sheet (under the initial parameter values), we might be disappointed by the fact that the LMS estimate of the slope, 4.06, is quite far from its true value, 5.  Conventional least squares, with b1 = 4.99, seems to be much better than LMS.

But two points must be considered: (1) the sample was based on Clean data and (2) this is simply one realization of the data generation process.  How will LMS fare with Dirty data?  Return to the cell AK1 of the Dead sheet and click the [image: image15.wmf]LMS Fit

 button.  Scroll back to the beginning of the sheet and, run the analysis for the Dirty data set.  Note that the X data are in cells Dead!H8:H19 and the Y data are two columns over in cells Dead!J8:J19.  With this Dirty data sample, the LMS slope estimate of 2.93 is much closer to the true value of 5 than the 9.54 slope estimate generated by the LS algorithm. 

Of course, the LS and LMS slope estimates from the Clean and Dirty data are simply single draws from the appropriate sampling distribution.  To fully explore the properties of the LMS estimator and compare its performance to LS, the sampling distributions must be determined.  The next section is devoted to Monte Carlo simulations designed to reveal these sampling distributions.

3.  Monte Carlo Simulation

The introduction demonstrated that conventional least squares is not a robust regression procedure because a single outlier can throw the fitted line way off.  The previous section introduced the Least Median of Squares estimator, touted as being robust to extreme values.  Although LMS is computationally much more difficult to fit than LS, a fitting routine that is guaranteed to find the true minimum for a bivariate regression has been included in the LMS.xls workbook.  

Armed with an understanding of LMS and a reliable minimization procedure, we are ready to put the LMS estimator to the test.  Comparisons of single sample results (as in the previous section) are not sufficient to establish the properties of an estimator.  However, we can repeatedly resample to build an approximate sampling distribution for a particular case.

Since there are two estimators (LS and LMS) under two types of data (Clean and Dirty), there are four comparisons that can be made.
  The first section showed that LS suffered from bias when applied to the Dirty data set (see the LSMCSim sheet).  In this section, we will systematically explore Monte Carlo simulations of the LMS estimator in Clean and Dirty data situations, LS versus LMS with Clean data, and, finally, LS is compared to LMS with Dirty data.

LMS with Clean and Dirty Data (LMSMCSim sheet)

Return to the Live sheet in the LMS.xls workbook.  Click on the [image: image16.wmf]Show Clean v Dirty 

LMS 

Monte Carlo Simulation

 button.  You are now ready to run a Monte Carlo simulation that compares the LMS estimator under Clean and Dirty data environments.  Using the parameter values in the Live sheet, new samples of Clean and Dirty Ys will be drawn (while the Xs remain fixed in repeated sampling) and the LMS line for each sample will be fit.  You determine how many samples, or repetitions, to run.  Remember that the LMS fitting procedure is much more complicated than conventional least squares and, therefore, it will take longer.  The default value is set at 100 repetitions, but you may find that your computer can calculate 1000 repetitions reasonably quickly.  If you get impatient, hit the Escape key (Esc) in the top left-hand corner of the keyboard to interrupt the macro. 

The first 100 LMS slope estimates are reported in columns B and C of the LMSMCSim sheet.  All slope estimates are included in the histogram and summary statistics.
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Figure 3.1: LMS with Clean and Dirty Data

The results make clear the primary advantage of LMS (or other robust regression techniques)—the outlier in the Dirty data set has little impact on the sampling distribution of the estimator.  Unlike LS (see Figure 1.2), LMS remains essentially unbiased, although its spread is a little greater, when subjected to the Dirty data test.  If you ran only 100 or even 1,000 repetitions, here is a situation where you may want to run another simulation or increase the number of repetitions to get a better reading. 

LS versus LMS with Clean Data (CleanMCSim sheet)

To continue testing, return to the Live sheet in the LMS.xls workbook and click on the [image: image18.wmf]Show 

LS v. LMS

 

Clean 

Monte Carlo Simulation

 button.  The set up is the same as before.  Parameter values for Intercept, Slope,  (the spread of the mean zero, normally distributed errors), and Outlier Factor are used to generate as many Clean Y samples as you request.  For each sample, the LS and LMS sample slopes are found.  The first 100 are listed and summary statistics and a histogram are provided for all of the sample slopes in the simulation.
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Figure 3.2: LS versus LMS with Clean Data

Now it is conventional least squares that emerges as the clear winner.  Both LS and LMS are unbiased with Clean data, but LS has much greater precision since its standard error (approximated by the SD of the empirical histogram generated by the simulation) looks to be about half of the LMS SE. 

LS versus LMS with Dirty Data (DirtyMCSim sheet)

Return to the Live sheet in the LMS.xls workbook one last time and click on the [image: image20.wmf]Show

 LS v. LMS 

Dirty 

Monte Carlo Simulation

 button.  Run a Monte Carlo simulation that compares the LS and LMS estimators in the presence of Dirty data (defined as having the one aberrant Y11 observation).  
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Figure 3.3: LS versus LMS with Dirty Data

This time LMS wins.  Because it uses the median to fit the line, the single outlier does not affect the LMS sampling distribution very much.  It remains centered on the true value with the same, unfortunately low, precision as the Clean data situation.  The extreme value at Y11 effectively destroys the performance of the conventional least squares estimator.  With its expected value far from the true 1 combined with a small SE, the LS sampling distribution is not attractive.

By racing LS and LMS estimators with Monte Carlo simulation, we learn the conditions under which they perform well or poorly.  It is clear that conventional least squares is not a robust estimator—it is sensitive to extreme values.  LMS is a member of a family of robust regression estimators because outliers do not affect it very much.  The Monte Carlo simulations of this section reveal, however, that LMS may remain unbiased in the presence of outliers, but with either Clean or Dirty data , it suffers from low precision.

4.  Conclusion

Given the data generating process Yi = 0 + 1Xi + i , where i is independently and identically distributed N(0,), the conventional approach is to estimate the slope parameter via ordinary least squares (LS or OLS). The first section demonstrated that outliers destroy the desirable properties of the least squares estimator (it is no longer unbiased) because LS is sensitive, or not robust, to extreme values.  It is worth remembering that dirty data causes big problems for least squares estimation.

By modifying the line fitting goal from minimizing the sum, or average, of the squared residuals, to minimizing the median of the squared residuals, a robust estimator, called LMS, can be used to fit the line.  The second section showed that fitting an LMS line is a complicated procedure that requires sophisticated methods. A simple formula does not exist and brute force optimization is unreliable.  The algorithm used in the LMS.xls workbook was adapted from work done by Rousseeuw [1984] and it works only on bivariate regression.

The third section was devoted to Monte Carlo simulations in order to test the LMS estimator.  Three paired comparisons were made.  The results show that, in the presence of an outlier, LMS remains essentially unbiased while the expected value of the LS estimator does not equal the true parameter value.  The amount of the bias in the LS estimator depends on the number, magnitude, and location of the outliers. For most purposes, LMS does not displace LS as the estimator of choice, however, because the precision of the LMS estimator is quite low compared to its LS counterpart.  Thus, if the data are clean, conventional least squares beats robust regression via LMS since both are unbiased, but LS has a smaller SE.

Econometrics is not an exact science.  Rule-based decisions, like “LS if clean; LMS (or some other robust regression procedure) if dirty,” simply push back the inevitable need for judgment.  How will we know if the data set is clean or dirty?  This question can only be answered correctly if the analyst knows the process that generated the data.  

LMS is one of many alternatives to conventional least squares.  Its applicability depends on the situation at hand.  By realizing that there are many recipes for analyzing data and judgment is required, you become a better analyst.

Additional and Advanced Work

Rouusseeuw and Leroy [1987] have many examples of LMS and consider other robust regression techniques (such as Least Trimmed Squares).  This is the place to start.  

For examples of the LMS applied to economic data, see Zaman, et al. [2001].  Earnings functions with very high and low measured wages would seem to be a good candidate for exploration with LMS and other robust regression techniques.

Fitting the LMS line has led to at least three algorithms.  In addition to Rousseeuw’s PROGRESS code, Mount, et al. [1997] and Olsen [1997] have approximation algorithms based on random sampling.  Edelsbrunner and Souvaine [1990] offer another algorithm based on topological sweep.

LMS has some peculiar and interesting properties.  If you happened to notice the that three of the squared residuals had the same value (10.14317) when the LMS line was fit to the Clean data in the Dead sheet, this is no coincidence.  Steele and Steiger [1986] and Souvaine and Steele [1987] explain why the LMS line must have an equioscillating triple in the bivariate case.

Efron and Tibshirani [1998] have a nice example of LMS with a real-world cell survival data set.  However, the model is based on regression through the origin.  It turns out that LMS fitting a line with no intercept poses special problems.  Barreto [2001] explains why.
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� There are many other robust regression procedures.  See Robust Regression and Outlier Detection by Peter J. Rousseeuw and Annick M. Leroy (1987, John Wiley & Sons).


� Cell T6 in the Dead sheet shows the average of the squared residuals.  Run Solver using T6 instead of T7 (SSR) as the target cell.  The optimal intercept and slope remain unchanged.


� It turns out that minimizing the median of the squared residuals is equivalent to minimizing the absolute value of the squared residuals. 


� Excel’s Median function uses the middle value when n is odd and averages the two middle values when n is even.


� Steele and Steiger [1986] show that the Median of Squared Residuals surface can have O(n2) local minima.  “This high number of local minima makes any approach with gradient methods (or even naïve line search) a risky proposition.” (p. 94)


� Actually, there is one other comparison that can be tested.  Return to the Live sheet and run all four Monte Carlo simulations with Y6 (instead of Y11) as the outlier.  It is true that LS is sensitive to outliers, but outliers in the middle of the data don’t cause as much trouble.
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