ZERO-DIVISOR AND IDEAL-DIVISOR GRAPHS OF COMMUTATIVE RINGS T. BRAND, M. JAMESON, M. MCGOWAN, AND J.D. MCKEEL ABSTRACT. For a commutative ring R, we can form the zero-divisor graph $\Gamma(R)$ or the ideal-divisor graph $\Gamma_I(R)$ with respect to an ideal I of R. We consider the diameters of direct products of zero-divisor and ideal-divisor graphs. ## 1. Introduction and Definitions The concept of a zero-divisor graph was first introduced in 1988 in [3] by Beck, who was interested in the coloring of the zero-divisor graph. However, we use the slightly altered definition of a zero-divisor graph offered by Anderson and Livingston in [1]. Anderson and Livingston also proved that the diameter of $\Gamma(R)$ is less than or equal to three for all commutative rings R. This knowledge of small diameter of zero-divisor graphs led Axtell, Stickles, and Warfel to find necessary and sufficient conditions for the direct product of two commutative rings R_1 and R_2 to have various diameters in [2]. Given a commutative ring R, recall that the set of zero-divisors Z(R) is the set $\{x \in R \mid \text{there exists } y \in R^* \text{ such that } xy = 0\}$, where $R^* = R - \{0\}$. Also, $Z(R)^* = Z(R) - \{0\}$. Finally, we define regular elements to be $\operatorname{reg}(R) = R - Z(R)$ and the annihilator of a zero-divisor x to be $\operatorname{ann}(x) = \{y \in Z(R)^* \mid xy = 0\}$. We can define the **zero-divisor graph** of R, $\Gamma(R)$, as follows: $x \in \Gamma(R)$ if and only if $x \in Z(R)^*$, and $x, y \in \Gamma(R)$ are adjacent if and only if xy = 0. Furthermore, we can define the diameter of any graph $\operatorname{diam}(\Gamma) = \max\{d(x,y) \mid x \text{ and } y \text{ are distinct vertices of } \Gamma(R)\}$. For the sake of generalization we can think of $\{0\}$ as an ideal of the ring R. Given a commutative ring R and any ideal I of R, we define the **ideal-divisors** of R with respect to I as $Z_I(R) = \{x \in R \mid \text{there exists } y \in R - I \text{ such that } xy \in I\}$. Furthermore, we can define $Z_I(R)^*$ as $Z_I(R) - I$. Also, $\operatorname{reg}_I(R) = R - Z_I(R)$ and $\operatorname{ann}_I(x) = \{y \in Z_I(R)^* \mid xy \in I\}$. We can define the **ideal-divisor graph** of R, $\Gamma_I(R)$, by letting x be an element of $\Gamma_I(R)$ if and only if x is an element of $Z_I(R)^*$; x and y in $\Gamma_I(R)$ are adjacent if and only if xy is an element of I. The ideal-divisor graph was first discussed by Redmond in [4]. He was able to generalize many of the concepts and theorems of the zero-divisor graph to the ideal-divisor graph. In particular, Redmond showed that the diameter of $\Gamma_I(R)$ is less than or equal to three for all commutative rings R and I an arbitrary ideal of R. In this paper we complete the classification done by Axtell, Stickles, and Warfel in [2] to include direct products of commutative rings that have diameter zero and generalize the entire classification to ideal-divisor graphs. Date: February 27, 2006. ## 2. Ideal-Divisor Graphs of Direct Products We begin with some necessary lemmas generalized from similar lemmas used by Axtell, Stickles, and Warfel. **Lemma 2.1.** Let R_1 and R_2 be rings with ideals I_1 and I_2 , respectively, with $Z_{I_1}(R_1)^* \neq \emptyset$ or $Z_{I_2}(R_2)^* \neq \emptyset$ (or both). If $\operatorname{reg}_{I_1}(R_1) \neq \emptyset$ and $\operatorname{reg}_{I_2}(R_2) \neq \emptyset$, then $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$. *Proof.* Without loss of generality, let $a \in Z_{I_1}(R_1)^*$. Then there exists $b \in Z_{I_1}(R_1)^*$ such that $ab \in I_1$. Let $r_1 \in \operatorname{reg}_{I_1}(R_1)$, $r_2 \in \operatorname{reg}_{I_2}(R_2)$. Then $$(r_1,0) - (0,r_2) - (a,0) - (b,r_2)$$ is a path of length 3. Assume there is a shorter path from $(r_1,0)$ to (b,r_2) . Clearly, $(r_1,0)(b,r_2) \notin I_1 \times I_2$, so there is no path of length 1. Assume there exists $(x,y) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$ such that $(x,y)(r_1,0),(x,y)(b,r_2) \in I_1 \times I_2$. Then $xr_1 \in I_1$ and $yr_2 \in I_2$, which gives $x \in I_1$ and $y \in I_2$, a contradiction. Hence, diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$. **Lemma 2.2.** If $R_1 = I_1$ and $diam(\Gamma_{I_2}(R_2)) > 0$, then $diam(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = diam(\Gamma_{I_2}(R_2))$. *Proof.* Let $R_1 = I_1$ and let diam $(\Gamma_{I_2}(R_2)) > 0$. - Suppose $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = n > \operatorname{diam}(\Gamma_{I_2}(R_2))$ such that n = 2 or 3. Then $\exists (a_0, x_0), (a_1, x_1), ..., (a_n, x_n) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$ such that $(a_0, x_0) (a_1, x_1) ... (a_n, x_n)$ is a minimal path. Then $x_0 x_1 ... x_n$, but since $n > \operatorname{diam}(\Gamma_{I_2}(R_2)), x_0 x_1 ... x_n$ must not be a minimal path. This can happen in two ways: - If $\exists i, j$ such that $0 \le i < j \le n, j \ne i+1$, and $x_i x_j$. Then $(a_i, x_i) (a_j, x_j)$, a contradiction of $(a_0, x_0) (a_1, x_1) \dots (a_n, x_n)$ being a minimal path. - If n = 3 and $\exists y \in Z_{I_2}(R_2)^*$ such that $y \notin \{x_i \mid 0 \le i \le n\}$ and $x_0 y x_n$. Then $(a_0, x_0) (0, y) (a_n, x_n)$, a contradiction of $(a_0, x_0) (a_1, x_1) \dots (a_n, x_n)$ being a minimal path. So diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq \operatorname{diam}(\Gamma_{I_2}(R_2))$. • Suppose $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) < \operatorname{diam}(\Gamma_{I_2}(R_2)) = n$ such that $1 \le n \le 3$. Then $\exists x_0, x_1, ..., x_n \in Z_{I_2}(R_2)^*$ such that $x_0 - x_1 - ... - x_n$ is a minimal path. Since $R_1 = I_1, \forall a_0, a_1, ..., a_n \in R_1, (a_0, x_0) - (a_1, x_1) - ... - (a_n, x_n)$ is a minimal path of length n, a contradiction. So $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \ge \operatorname{diam}(\Gamma_{I_2}(R_2))$. Thus $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = \operatorname{diam}(\Gamma_{I_2}(R_2)).$ **Lemma 2.3.** (Analogue to ASW Lemma 2.2) Let R be a commutative ring with ideal I. If $R = Z_I(R)$ and diam $(\Gamma_I(R)) = 1$, then $R^2 \subseteq I$. Proof. Note that for all $x, y \in R$ with $x \neq y, xy \in I$ because $\operatorname{diam}(\Gamma_I(R)) = 1$. Assume that $a^2 \notin I$ for some $a \in R$. Let $b \in Z_I(R)^*$ with $b \neq a$. Observe that $a + b \neq a$. Since $R = Z_I(R)$ and $\operatorname{diam}(\Gamma_I(R)) = 1$, we have $ab \in I$. So, $a(a + b) = a^2 + ab \in I$, which implies $a^2 \in I$, a contradiction. **Theorem 2.4.** Let R_1, R_2 be commutative rings such that $\operatorname{diam}(\Gamma(R_1)) = \operatorname{diam}(\Gamma(R_2)) = 0$. Then - (i) diam($\Gamma(R_1 \times R_2)$) = 0 if and only if (without loss of generality) $R_1 = \{0\}$. - (ii) $\operatorname{diam}(\Gamma(R_1 \times R_2)) = 1$ if and only if $|R_1| = |R_2| = 2$ and $R_1 \cong R_2$. - (iii) diam($\Gamma(R_1 \times R_2)$) = 3 if and only if $R_1 \neq Z(R_1)$, $R_2 \neq Z(R_2)$, and (without loss of generality) $|Z(R_1)^*| = 1$. - (iv) diam($\Gamma(R_1 \times R_2)$) = 2 otherwise. - Proof. (i) (\Rightarrow) Assume for contradiction that $\operatorname{diam}(\Gamma(R_1 \times R_2)) = 0$ and $R_1, R_2 \neq \{0\}$. Then $\exists x \in R_1^*, y \in R_2^*$. Now (x,0) and (0,y) are two adjacent vertices in $\Gamma(R_1 \times R_2)$, so $\operatorname{diam}(\Gamma(R_1 \times R_2)) > 0$. (\Leftarrow) Assume without loss of generality that $R_1 = \{0\}$. Then $R_1 \times R_2 \cong R_2$, so $\operatorname{diam}(\Gamma(R_1 \times R_2)) = 0$. - (ii) (\Rightarrow) Assume diam($\Gamma(R_1 \times R_2)$) = 1. - Assume without loss of generality $|R_1| \neq 2$. If $|R_1| = 1$, then $R_1 = \{0\}$, so $\operatorname{diam}(\Gamma(R_1 \times R_2)) = 0$ by part (i). Thus assume $|R_1| \geq 3$. Thus we have distinct $x, y \in R_1^*$. Note that $xy \neq 0$ because $\operatorname{diam}(\Gamma(R_1)) = 0$. Also, note that $|R_2| > 1$ by part (i) also. Let $z \in R_2^*$. Now, we have path $$(x,0) - (0,z) - (y,0)$$ which is minimal since $xy \neq 0$. Thus diam $(\Gamma(R_1 \times R_2)) \geq 2$. - Assume $R_1 \ncong R_2$. By argument above, $|R_1| = |R_2| = 2$. Recall that there are only two rings of order two: \mathbb{Z}_2 and $2\mathbb{Z}_4$. Since diam $(\Gamma(\mathbb{Z}_2 \times 2\mathbb{Z}_4)) = 2$, we have a contradiction. Thus $R_1 \cong R_2$. - (\Leftarrow) Assume $|R_1| = |R_2| = 2$ and $R_1 \cong R_2$. Since there are only two rings of order two, and diam $(\Gamma(2\mathbb{Z}_4 \times 2\mathbb{Z}_4)) = 1 = \text{diam}(\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)) = 1$, then diam $(\Gamma(R_1 \times R_2)) = 1$. - (iii) (\Rightarrow) Assume diam($\Gamma(R_1 \times R_2)$) = 3. - Assume without loss of generality that $Z(R_1) = R_1$. Also $|R_1| > 1$ by part (i). Thus, since $\operatorname{diam}(\Gamma(R_1)) = 0$, $R_1 \cong 2\mathbb{Z}_4$. Then every vertex in $\Gamma(R_1 \times R_2)$ is adjacent to (x,0), where $x \in R_1^*$. Then $\operatorname{diam}(\Gamma(R_1 \times R_2)) \leq 2$. This is a contradiction, of $\operatorname{diam}(\Gamma(R_1 \times R_2)) = 3$, so $R_1 \neq Z(R_1)$ and $R_2 \neq Z(R_2)$. - Assume $\Gamma(R_1) = \Gamma(R_2) = K_0$, the graph with no vertices. Thus $Z(R_1)^* = Z(R_2)^* = \varnothing$. Thus every vertex in $\Gamma(R_1 \times R_2)$ must be of the form (x,0) or (0,y), where $x \in \operatorname{reg}(R_1), y \in \operatorname{reg}(R_2)$. Thus $\Gamma(R_1 \times R_2)$ is complete bipartite, so $\operatorname{diam}(\Gamma(R_1 \times R_2)) \leq 2$. - (\Leftarrow) By Lemma 2.1. - (iv) Follows from (i), (ii), (iii). 3. Ideal-Divisor Graphs of Direct Products (Diameter Zero By N) **Lemma 3.1.** Let $\Gamma_I(R)$ be the ideal-divisor graph of R with respect to an ideal I such that $\Gamma_I(R)$ has exactly one vertex. Then $I = \{0\}$. Proof. Assume $\Gamma_I(R)$ as above. Then $\exists x \in Z_I(R)^*$ such that $x^2 \in I$. Let $i \in I$. Now $(x+i)x = x^2 + ix \in I$. Thus, since there is only one vertex in $\Gamma_I(R)$, we know that x+i=x, so i=0. Thus $I=\{0\}$. **Lemma 3.2.** (Analogue to ASW Lemma 2.3) Let R be a commutative ring with ideal I such that $\operatorname{diam}(\Gamma_I(R)) = 2$. Suppose $Z_I(R)$ is a (not necessarily proper) subring of R. Then for all $x, y \in Z_I(R)$, there exists a $z \notin I$ such that $xz, yz \in I$. *Proof.* Let $x, y \in Z_I(R)$. If $x \in I$, then simply choose z such that $yz \in I$. We can similarly find z if $y \in I$ or if x = y. Thus we assume x, y are distinct and not in I. Since $\operatorname{diam}(\Gamma_I(R)) = 2$, if $xy \notin I$, we know that there exists some $z \in Z_I(R)^*$ such that $xz, yz \in I$. So assume $xy \in I$. If $x^2 \in I$, then clearly we can choose z = x. A similar situation exists if $y^2 \in I$. Therefore we may also assume that $x^2, y^2 \notin I$. Let $X = \{x' \in Z_I(R)^* \mid xx' \in I\}$ and $Y = \{y' \in Z_I(R)^* \mid yy' \in I\}$. Note that since $x \in Y$ and $y \in X$, these sets are not empty. Furthermore, if $X \cap Y \neq \emptyset$, then choosing $z \in X \cap Y$ will suffice. Thus assume that $X \cap Y = \emptyset$. Consider the element x + y. Obviously $x + y \neq x$ and $x + y \neq y$. If $x + y \in I$, then $x(x + y) \in I$ which implies that $x^2 \in I$. Thus $x + y \notin I$. Thus $x + y \in Z_I(R)^*$ since $Z_I(R)$ is a subring. Furthermore, since $x^2, y^2 \notin I$, we know that $x + y \notin X$ and $x + y \notin Y$. But the diameter of $\Gamma_I(R)$ is 2, so we know that we can find some $w \in X$ such that $xw \in I$, $w(x + y) \in I$. But then $w(x + y) \in I$ which implies that $wy \in I$, so $w \in X \cap Y$, which is a contradiction. \square **Theorem 3.3.** Let R_1, R_2 be commutative rings and I_1, I_2 be their respective ideals such that $\operatorname{diam}(\Gamma_{I_1}(R_1)) = \operatorname{diam}(\Gamma_{I_2}(R_2)) = 0$. Then - (i) diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 0 if and only if (without loss of generality) $I_1 = R_1$ and either $R_1 = \{0\}$ or I_2 is a prime ideal - (ii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 1$ if and only if (without loss of generality) $I_1 = \{0\}$ and either $Z_{I_1}(R_1)^* \neq \emptyset$ with $I_2 = R_2 \neq \{0\}$ or $R_1 \cong R_2$ with $|R_1| = 2$ - (iii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$ if and only if $R_1 \neq Z_{I_1}(R_1), R_2 \neq Z_{I_2}(R_2)$ and (without loss of generality) $|Z_{I_1}(R_1)^*| = 1$. - (iv) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$ otherwise. - Proof. (i) (\Rightarrow) Assume diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 0. Now, if $\operatorname{reg}_{I_1}(R_1), \operatorname{reg}_{I_2}(R_2) \neq \varnothing$, then $\exists x \in \operatorname{reg}_{I_1}(R_1), y \in \operatorname{reg}_{I_2}(R_2)$. Then $(x,0)(0,y) = 0 \in I_1 \times I_2$, which is a contradiction of diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 0. Thus, without loss of generality, $\operatorname{reg}_{I_1}(R_1) = \varnothing$, so $R_1 = I_1$. - If $\Gamma_{I_1 \times I_2}(R_1 \times R_2) = K_0$, then $I_1 \times I_2$ is a prime ideal. Now, consider $ab \in I_2$. Then $(0,a)(0,b) \in I_1 \times I_2$. Since $I_1 \times I_2$ is prime, $(0,a) \in I_1 \times I_2$ or $(0,b) \in I_1 \times I_2$. Thus $a \in I_2$ or $b \in I_2$. Thus I_2 is a prime ideal. - If $\Gamma_{I_1 \times I_2}(R_1 \times R_2)$ has one vertex, then $I_1 \times I_2 = \{0\}$, by Lemma 3.1. Then $I_1 = I_2 = \{0\}$, and $\Gamma_{I_1 \times I_2}(R_1 \times R_2) = \Gamma(R_1 \times R_2)$. By Theorem 2.4, then without loss of generality, $R_1 = \{0\}$. - (\Leftarrow) Assume $I_1 = R_1$ and either $R_1 = \{0\}$ or I_2 is a prime ideal. - Let $I_1 = R_1 = \{0\}$. If $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 0, \exists (0, y_1), (0, y_2) \notin I_1 \times I_2 \text{ such that } (0, y_1)(0, y_2) \in I_1 \times I_2.$ Then $y_1, y_2 \notin I_2$ and $y_1 y_2 \in I_2$, so $\operatorname{diam}(\Gamma_{I_2}(R_2)) > 0$. This is a contradiction, so $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 0$. - Let $I_1 = R_1$, and I_2 be a prime ideal of R_2 . If $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 0$, then there exist distinct $(x_1, y_1), (x_2, y_2) \notin I_1 \times I_2$ such that $(x_1, y_1)(x_2, y_2) \in I_1 \times I_2$. Since $R_1 = I_1$, we have $y_1, y_2 \notin I_2$ and $y_1y_2 \in I_2$. Thus I_2 is not a prime ideal. This is a contradiction, so $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 0$. - (ii) (\Rightarrow) Assume diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 1. - Assume $\Gamma_{I_1}(R_1) = \Gamma_{I_2}(R_2) = K_0$. Since $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 1, \exists$ vertices $(x,0), (0,y) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$. Thus $\exists x \in \operatorname{reg}_{I_1}(R_1), y \in \operatorname{reg}_{I_2}(R_2)$. For all $i \in I_1, (x+i,0)(0,y) \in I_1 \times I_2$, and $(x+i,0)(x,0) \notin$ - $I_1 \times I_2$. This implies that (x+i,0) = (x,0), so i=0 and thus $I_1 = \{0\}$. Similarly, $I_2 = \{0\}$. By Theorem 2.4, $|R_1| = |R_2| = 2$ and $R_1 \cong R_2$. - Assume $\Gamma_{I_1}(R_1) = K_1$ and $\Gamma_{I_2}(R_2) = K_0$. By Lemma 3.1, $I_1 = \{0\}$. Let $x \in Z_{I_1}(R_1)^*$ (x must exist since $\Gamma_{I_1}(R_1) = K_1$). If $R_2 \neq I_2, \exists y \in \operatorname{reg}_{I_2}(R_2)$. Then $(x,0)(x,y) \in I_1 \times I_2$ and $(x,0)(0,y) \in I_1 \times I_2$, but $(x,y)(0,y) \notin I_1 \times I_2$. Thus $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \geq 2$. So $I_2 = R_2$. Also note that $I_2 \neq \{0\}$ (since $I_2 = \{0\}$ would imply $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 0$ by part (i) above). - Assume $\Gamma_{I_1}(R_1) = \Gamma_{I_2}(R_2) = K_1$. By Lemma 3.1, $I_1 = I_2 = \{0\}$, so $|R_1| = |R_2| = 2$ and $R_1 \cong R_2$ by Theorem 2.4. (\Leftarrow) - Assume that $I_1 = \{0\}$ and $R_1 \cong R_2$ with $|R_1| = 2$. Thus diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 1$ by Theorem 2.4. - Assume that $I_1 = \{0\}$ and $Z_{I_1}(R_1)^* \neq \emptyset$ with $I_2 = R_2 \neq \{0\}$. Let $x \in Z_{I_1}(R_1)^*$. Thus, for all vertices $(x, y_1), (x, y_2) \in Z_{I_2 \times I_2}(R_1 \times R_2)^*$ (we know $y_1, y_2 \in I_2$, so the first entry must indeed be x), it's clear that $(x, y_1)(x, y_2) \in I_1 \times I_2$. Also, there are at least two vertices since $I_2 \neq \{0\}$, so diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 1$. - (iii) (\Rightarrow) Assume diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$. - Assume $\Gamma_{I_1}(R_1) = \Gamma_{I_2}(R_2) = K_0$. Then $Z_{I_1}(R_1)^* = Z_{I_2}(R_2)^* = \emptyset$. Now, consider $(x_1, y_1), (x_2, y_2) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$ such that $d((x_1, y_1), (x_2, y_2)) = 3$. Since $(x_1, y_1) \notin I_1 \times I_2$, assume without loss of generality that $x_1 \in \text{reg}_{I_1}(R_1)$. Then $y_1 \in I_2$. Similarly, $x_2 \in \text{reg}_{I_2}(R_1)$ or $y_2 \in \text{reg}_{I_2}(R_2)$. - If $x_2 \in \text{reg}_{I_1}(R_1)$, then $y_2 \in I_2$ because $(x_2, y_2) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$. Let (a, b) be a vertex adjacent to (x_1, y_1) . We know that $x_1 a \in I_1$, so $a \in I_1$. Thus $(a, b)(x_2, y_2) \in I_1 \times I_2$ since $a \in I_1$ and $y_2 \in I_2$. Thus $d((x_1, y_1), (x_2, y_2)) = 2$. - If $y_2 \in \operatorname{reg}_{I_2}(R_2)$, then $x_2 \in I_1$. Thus $(x_1, y_1)(x_2, y_2) \in I_1 \times I_2$, so $\operatorname{d}((x_1, y_1), (x_2, y_2)) = 1$. In either case, we have a contradiction. - Assume $\Gamma_{I_1}(R_1) = K_1$ and $\Gamma_{I_2}(R_2) = K_0$. $I_1 = \{0\}$ by Lemma 3.1. If $R_2 = Z_{I_2}(R_2)$, then $R_2 = I_2$. Let $x \in Z_{I_1}(R_1)^*$. Since $R_2 = Z_{I_2}(R_2)$, the set of vertices is $Z_{I_1 \times I_2}(R_1 \times R_2) = \{(x,i) \mid i \in I_2\}$, all of which are adjacent to each other by definition. So $\Gamma_{I_1 \times I_2}(R_1 \times R_2) = K_{|R_2|}$. This is a contradiction of diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$, so $R_2 \neq Z_{I_2}(R_2)$. If $R_1 = Z_{I_1}(R_1)$, then (x,0) is adjacent to all other vertices in $\Gamma_{I_1 \times I_2}(R_1 \times R_2)$, where $x \in Z_{I_1}(R_1)^*$. Thus diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq 2$. Thus $R_1 \neq Z_{I_1}(R_1)$. - Assume $\Gamma_{I_1}(R_1) = \Gamma_{I_2}(R_2) = K_1$. Then $I_1 = I_2 = \{0\}$ by Lemma 3.1, so $R_1 \neq Z_{I_1}(R_1)$ and $R_2 \neq Z_{I_2}(R_2)$ by Theorem 2.4. - (\Leftarrow) Assume $R_1 \neq Z_{I_1}(R_1), R_2 \neq Z_{I_2}(R_2), \Gamma_{I_1}(R_1) = K_1$ and diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) $\neq 3$. Let $x_1 \in \operatorname{reg}_{I_1}(R_1), x_2 \in Z_{I_1}(R_1)^*$, and $y \in \operatorname{reg}_{I_2}(R_2)$. Consider the distinct vertices $(x_1, 0)$ and (x_2, y) . Clearly, $(x_1, 0)(x_2, y) \notin I_1 \times I_2$ by construction. Thus $\exists (a, b) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$ such that $(a, b)(x_1, 0) \in I_1 \times I_2$ and $(a, b)(x_2, y) \in I_1 \times I_2$. Since $x_1 a \in I_1$ and $y b \in I_2$, then $(a, b) \in I_1 \times I_2$, which is a contradiction. Thus diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 3. - (iv) Follows from (i), (ii), (iii). **Theorem 3.4.** Let diam $(\Gamma_{I_1}(R_1)) = 0$ and diam $(\Gamma_{I_2}(R_2)) = 1$. - (i) diam($\Gamma(R_1 \times R_2)$) > 0. - (ii) diam $(\Gamma(R_1 \times R_2)) = 1$ if and only if both $R_1^2 \subseteq I_1$ and $R_2^2 \subseteq I_2$ or $R_1 = I_1$. - (iii) diam($\Gamma(R_1 \times R_2)$) = 2 if and only if $R_1 \neq I_1$ and (without loss of generality) $R_1^2 \subseteq I_1$ and $R_2^2 \nsubseteq I_2$. - (iv) diam($\Gamma(R_1 \times R_2)$) = 3 if and only if $R_1^2 \nsubseteq I_1$ and $R_2^2 \nsubseteq I_2$. *Proof.* Let diam $(\Gamma_{I_1}(R_1)) = 0$ and diam $(\Gamma_{I_2}(R_2)) = 1$. - (i) Let $x, y \in Z_{I_2}^*(R_2)$ such that $x \neq y$ and $xy \in I_2$. Then $(0, x)(0, y) = (0, xy) \in I_1 \times I_2$, so diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 0$. - (ii) (\Rightarrow) Let diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 1$. - Suppose $R_1^2 \nsubseteq I_1$, then $\exists a, b \in R_1$ such that $ab \notin I_1$. Clearly $a, b \notin I_1$. Let $c \in Z_{I_2}^*(R_2)$. Then $(a, c), (b, 0) \in Z_{I_1 \times I_2}^*(R_1 \times R_2)$, but $(a, c)(b, 0) = (ab, 0) \notin I_1 \times I_2$, so d((a, c), (b, 0)) > 1, a contradiction. - Suppose $R_2^2 \nsubseteq I_2$, then $\exists a, b \in R_2$ such that $ab \notin I_2$. Clearly $a, b \notin I_2$. If $Z_{I_1}^*(R_1) \neq \emptyset$, let $c \in Z_{I_1}^*(R_1)$. Then $(c, a), (0, b) \in Z_{I_1 \times I_2}^*(R_1 \times R_2)$, but $(c, a)(0, b) = (0, ab) \notin I_1 \times I_2$, so d((c, a), (0, b)) > 1, a contradiction. Thus $Z_{I_1}(R_1)^* = \emptyset$, so consider $R_1 I_1$. If $R_1 I_1 \neq \emptyset$, then $R_1^2 \nsubseteq I_1$, a contradiction from earlier. Thus $R_1 I_1 = \emptyset$, so $R_1 = I_1$. (\Leftarrow) - Suppose $R_1=I_1$. By Lemma 2.2, $\operatorname{diam}(\Gamma_{I_1\times I_2}(R_1\times R_2))=\operatorname{diam}(\Gamma_{I_2}(R_2))=1$. - Suppose $R_1^2 \subseteq I_1$ and $R_2^2 \subseteq I_2$. Then for all $(a,b), (c,d) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$, since $ac \in I_1$ and $bd \in I_2, (ac,bd) \in I_1 \times I_2$, so diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 1$. - (iii) (\Rightarrow) Let diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$. - By contrapositive of Lemma 2.2, $R_1 \neq I_1$. - Suppose $Z_{I_1}(R_1)^* \neq \varnothing$. Assume $\operatorname{reg}_{I_1}(R_1), \operatorname{reg}_{I_2}(R_2) \neq \varnothing$. Let $a \in \operatorname{reg}_{I_1}(R_1), b \in \operatorname{reg}_{I_2}(R_2), c \in Z_{I_1}(R_1)^*, d \in Z_{I_2}(R_2)^*$. Since a is regular, we need an element from I_1 in the first component to kill a, and since b is regular, we need an element from I_2 in the second component to kill b. Then $\operatorname{ann}_{I_1 \times I_2}((a,d)) = \{(i,l) \mid dl \in I_2 \text{ and } i \in I_1\}$ and $\operatorname{ann}_{I_1 \times I_2}((c,b)) = \{m,i\} \mid cm \in I_1 \text{ and } i \in I_2\}$. Since $\operatorname{ann}_{I_1 \times I_2}((a,d)) \cap \operatorname{ann}_{I_1 \times I_2}(c,b) = I_1 \times I_2$, only trivial elements (elements in $I_1 \times I_2$) can kill both (a,d) and (c,b), so $\operatorname{d}((a,d),(c,b)) > 2$, a contradiction. Thus either $\operatorname{reg}_{I_2}(R_1) = \varnothing$ or $\operatorname{reg}_{I_2}(R_2) = \varnothing$. - a contradiction. Thus either $\operatorname{reg}_{I_1}(R_1)=\varnothing$ or $\operatorname{reg}_{I_2}(R_2)=\varnothing$. Suppose $\operatorname{reg}_{I_2}(R_2)=\varnothing$. Then $R_2=Z_{I_2}(R_2)$ and by Lemma $2.3,\,R_2^2\subseteq I_2$. By ii), $R_1^2\not\subseteq I_1$. - Now suppose $\operatorname{reg}_{I_1}(R_1) = \emptyset$. Since $\operatorname{diam}(\Gamma_{I_1}(R_1)) = 0$ and $Z_{I_1}(R_1)^* \neq \emptyset$, $\Gamma_{I_1}(R_1) = K_1$. Then $Z_{I_1}(R_1)^* = \{a\}, a^2 \in I_1$, and $R_1 = \{0, a\}$. Then $R_1^2 \subseteq I_1$, and by ii), $R_2^2 \neq 0$. - Suppose $Z_{I_1}(R_1)^* = \varnothing$. Then since $R_1 \neq I_1, \operatorname{reg}_{I_1}(R_1) \neq \varnothing$, and $R_1^2 \not\subseteq I_1$. Assume $\operatorname{reg}_{I_2}(R_2) \neq \varnothing$. Let $a \in \operatorname{reg}_{I_1}(R_1), x \in Z_{I_2}(R_2)^*, r \in \operatorname{reg}_{I_2}(R_2)$. Then $(a, x), (0, r) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$. Since a is regular, we need an element from I_1 in the first component to kill it a, and since r is regular, we need an element from I_2 in the second component to kill r. Then $\operatorname{ann}_{I_1 \times I_2}((a, x)) = \{(i, y) \mid xy \in I_2 \text{ and } i \in I_1\}$ and $\operatorname{ann}_{I_1 \times I_2}((0, r)) = \{(b, i) \mid b \in R_1 \text{ and } i \in I_2\}$. Since $\operatorname{ann}_{I_1 \times I_2}((a, x)) \cap \operatorname{ann}_{I_1 \times I_2}((0, r)) = I_1 \times I_2$, only trivial elements (elements in $I_1 \times I_2$) can kill both (a, x) and (0, r), so $\operatorname{d}((a, x), (0, r)) > 2$, a contradiction. Thus $\operatorname{reg}_{I_2}(R_2) = \varnothing$, so $R_2 = Z_{I_2}(R_2)$ and by Lemma 2.3, $R_2^2 \subseteq I_2$. (\Leftarrow) Assume $R_1^2 \subseteq I_1$, $R_2^2 \nsubseteq I_2$, and $R_1 \neq I_1$. Let $c \in R_1 - I_1$. Then (c, 0) is adjacent to every vertex in $\Gamma_{I_1 \times I_2}(R_1 \times R_2)$, so $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq 2$. Then from i), $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \neq 1$, so $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq 2$. Then from i), $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq 1$, so $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq 2$. Then from i), $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \neq 1$, so $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq 2$. Then from i), $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \neq 1$, so $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq 2$. (iv) Follows from (i), (ii), and (iii). Corollary 3.5. Let diam $(\Gamma(R_1)) = 0$ and diam $(\Gamma(R_2)) = 1$. - (i) diam($\Gamma(R_1 \times R_2)$) > 0. - (ii) diam($\Gamma(R_1 \times R_2)$) = 1 if and only if $R_1^2 = 0 = R_2^2$ or $R_1 = \{0\}$. - (iii) diam($\Gamma(R_1 \times R_2)$) = 2 if and only if $R_1 \neq \{0\}$ and (without loss of generality) $R_1^2 = 0$ and $R_2^2 \neq 0$. - (iv) diam($\Gamma(R_1 \times R_2)$) = 3 if and only if $R_1^2, R_2^2 \neq 0$. **Theorem 3.6.** Let R_1 and R_2 be rings with ideals I_1 and I_2 , respectively, such that diam $(\Gamma_{I_1}(R_1)) = 0$ and diam $(\Gamma_{I_2}(R_2)) = 2$. Then: - (i) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 1$. - (ii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$ if and only if $R_1 = Z_{I_1}(R_1)$ or $R_2 = Z_{I_2}(R_2)$. - (iii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$ if and only if $R_1 \neq Z_{I_1}(R_1)$ and $R_2 \neq Z_{I_2}(R_2)$. *Proof.* (i) Since diam $(\Gamma_{I_2}(R_2)) \geq 2$, there exist distinct $y_1, y_2 \in Z_{I_2}(R_2)^*$ with $y_1y_2 \notin I_2$. Then $(0, y_1)(0, y_2) = (0, y_1y_2) \notin I_1 \times I_2$. Therefore diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 1$. - (ii) (\Leftarrow) Let $R_1 = Z_{I_1}(R_1)$ (the proof of Theorem 3.13 satisfies the case where $R_2 = Z_{I_2}(R_2)$). Since diam $(\Gamma_{I_1}(R_1)) = 0$, either $R_1 = I_1$ or $R_1 = I_1 \cup \{a\}$, where $a^2 \in I_1$. Thus, $R_1^2 \subseteq I_1$. Therefore, $(r,0)(x,y) \in I_1 \times I_2$ for all $r \in R_1$, $(x,y) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$. Hence, diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \le 2$. By (i), diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$. - (\Rightarrow) By the contrapositive of Lemma 2.1. - (iii) By (i) and (ii). Corollary 3.7. Let R_1 and R_2 be rings with diam $(\Gamma(R_1)) = 0$ and diam $(\Gamma(R_2)) = 2$. Then: - (i) diam($\Gamma(R_1 \times R_2)$) > 1. - (ii) diam $(\Gamma(R_1 \times R_2)) = 2$ if and only if $R_1 = Z(R_1)$ or $R_2 = Z(R_2)$. - (iii) diam $(\Gamma(R_1 \times R_2)) = 3$ if and only if $R_1 \neq Z(R_1)$ and $R_2 \neq Z(R_2)$. **Theorem 3.8.** Let R_1 and R_2 be commutative rings. If $\operatorname{diam}(\Gamma_{I_1}(R_1)) = 0$ and $\operatorname{diam}(\Gamma_{I_2}(R_2)) = 3$, then: - (i) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 1$. - (ii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$ if and only if $R_1 = Z_I(R_1) \neq I_1$. - (iii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$ if and only if $R_1 = I_1$ or $R_1 \neq Z_I(R_1)$. Proof. (i) Same as Theorem 3.6 (i). (ii) (\Rightarrow) Let diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$. Assume that $R_1 \neq Z_I(R_1)$. Note that since diam $(\Gamma_{I_1 \times I_2}(R_2)(R_2) = 3)$, we can find a minimal path of length 3, $$y_1 - y_2 - y_3 - y_4$$ We also know there exists $r_1 \in \operatorname{reg}_I(R_1)$. But then consider the path $$(0, y_1) - (r_1, y_2) - (0, y_3) - (r_1, y_4)$$ Clearly none of the elements in the path are adjacent. If there exists some (i,b) where $i \in I_1$ such that $$(0, y_1) - (i, b) - (r_1, y_4)$$ is a path, this contradicts the fact that $d(y_1, y_4) = 3$. Thus that path must be minimal as well. But this implies $d((0, y_1), (r_1, y_4)) = 3$, a contradiction. If $Z_I(R_1) = I_1$, then if $j \in I_1$, the path $$(j, y_1) - (j, y_2) - (j, y_3) - (j, y_4)$$ is clearly minimal, so we get a contradiction here as well. (\Leftarrow) Let $R_1 = Z_I(R_1) \neq I_1$. Then there exist $a, b \in R_1$ (not necessarily distinct) where $ab \in I_1$. We know that we have the minimal path in $\Gamma_{I_2}(R_2)$ $$y_1 - y_2 - y_3 - y_4$$ therefore the path $(a, y_1) - (b, y_2) - (0, y_3)$ is minimal, so diam $\Gamma_{I_1 \times I_2}(R_1 \times I_2)$ $R_2)) \geq 2$. Note that since diam $(\Gamma_{I_1}(R_1)) = 0$, if $pq \in I_1$, then p = q. Since $R_1 \neq I_1$, we know that p exists. Thus all elements in $\Gamma_{I_1 \times I_2}(R_1 \times R_2)$ are of the form (j, r_2) or (p, r_2) for some $r_2 \in R_2$. Thus the element (p, 0)is a bridge between any two other elements, so we know the diameter of $\Gamma(R_1 \times R_2)$ is exactly 2. (iii) Follows from (i) and (ii). Corollary 3.9. Let R_1 and R_2 be commutative rings. Then if $\operatorname{diam}(\Gamma(R_1)) = 0$ and diam($\Gamma(R_2)$) = 3 then: - (i) diam($\Gamma(R_1 \times R_2)$) > 1. - (ii) diam($\Gamma(R_1 \times R_2)$) = 2 if and only if $R_1 = Z(R_1) \neq \{0\}$. (iii) diam($\Gamma(R_1 \times R_2)$) = 3 if and only if $R_1 = \{0\}$ or $R_1 \neq Z(R_1)$. **Theorem 3.10.** Let R_1 and R_2 be commutative rings with ideals I_1 and I_2 , respectively, such that $\operatorname{diam}(\Gamma_{I_1}(R_1)) = \operatorname{diam}(\Gamma_{I_2}(R_2)) = 1$. Then - (i) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 1$ if and only if $R_1^2 \subseteq I_1$ and $R_2^2 \subseteq I_2$. - (ii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$ if and only if without loss of generality $R_1^2 \subseteq I_1$ and $R_2^2 \nsubseteq I_2$. - (iii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$ if and only if $R_1^2 \nsubseteq I_1$ and $R_2^2 \nsubseteq I_2$. (i) (\Rightarrow) Without loss of generality, let diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 1$ and Proof. $R_1^2 \nsubseteq I_1$. Then there exist $x_1, x_2 \in R_1$ such that $x_1x_2 \notin I_1$. Therefore $(x_1,0)(x_2,0) \notin I_1 \times I_2$, so diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 1$. (\Leftarrow) Let $R_1^2 \subseteq I_1$ and $R_2^2 \subseteq I_2$. Then for all $(x_1, y_1), (x_2, y_2) \in R_1 \times R_2$, we know that $x_1x_2 \in I_1$ and $y_1y_2 \in I_2$, so $(x_1, y_1)(x_2, y_2) = (x_1x_2, y_1y_2) \in$ $I_1 \times I_2$. - (ii) (\Rightarrow) Assume diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 2. If $R_1^2 \subseteq I_1$ and $R_2^2 \subseteq I_2$, then diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 1 by part (i), which forms a contradiction. Thus assume $R_1^2 \nsubseteq I_1$ and $R_2^2 \nsubseteq I_2$. By Lemma 2.3, there must exist $x_1 \in \operatorname{reg}_{I_1}(R_1)$, and $y_1 \in \operatorname{reg}_{I_2}(R_2)$. Let $x_2 \in Z_{I_1}(R_1)$, $y_2 \in Z_{I_2}(R_2)$ and consider the two elements $(x_1, y_2), (x_2, y_1) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$. Clearly $(x_1, y_2)(x_2, y_1) = (x_1x_2, y_1y_2) \notin I_1 \times I_2$ by choice of x_1 and y_1 . Since diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 2, there must exist an element $(a, b) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$ such that $(x_1, y_2)(a, b) \in I_1 \times I_2$ and $(x_2, y_1)(a, b) \in I_1 \times I_2$. Thus $x_1a \in I_1$, so $a \in I_1$. Similarly, $y_1b \in I_2$, so $b \in I_2$. Thus $(a, b) \in I_1 \times I_2$, so we have a contradiction. - (\Leftarrow) Assume without loss of generality that $R_1^2 \subseteq I_1$, $R_2^2 \nsubseteq I_2$. Then $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 1$ by part (i). Also, since $R_1^2 \subseteq I_1$, for all $x_1, x_2 \in R_1$, $x_1x_2 \in I_1$. Thus $(x_1,0)$ is adjacent to every vertex in $\Gamma_{I_1 \times I_2}(R_1 \times R_2)$, so a path of length 2 can be found between any two vertices in $\Gamma_{I_1 \times I_2}(R_1 \times R_2)$ by way of the vertex $(x_1,0)$. Thus $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$. - (iii) Follows directly from parts (i) and (ii). **Theorem 3.11.** Let R_1 and R_2 be commutative rings with ideals I_1 and I_2 , respectively, such that $\operatorname{diam}(\Gamma_{I_1}(R_1)) = 1$ and $\operatorname{diam}(\Gamma_{I_2}(R_2)) = 2$. Then: - (i) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 1$. - (ii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$ if and only if $R_1 = Z_{I_1}(R_1)$ or $R_2 = Z_{I_2}(R_2)$. - (iii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$ if and only if $R_1 \neq Z_{I_1}(R_1)$ and $R_2 \neq Z_{I_2}(R_2)$. *Proof.* (i) Same as Theorem 3.6 (i). - (ii) (\Leftarrow) Let $R_1 = Z_{I_1}(R_1)$ (the case where $R_2 = Z_{I_2}(R_2)$ is addressed by the proof of Theorem 3.13). Thus, we have $R_1^2 \subseteq I_1$ by Lemma 2.3. Let $a \in R_1^*$. Since $(a,0)(x,y) \in I_1 \times I_2$ for all $(x,y) \in Z_{I_1 \times I_2}^{(} R_1 \times R_2)^*$, we have diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \le 2$. It follows from (i) that diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$. - (⇒) Assume that diam(Γ_{I₁×I₂}(R₁ × R₂)) = 2, R₁ ≠ Z_{I₁}(R₁), and R₂ ≠ Z_{I₂}(R₂). Let $x ∈ Z_{I_1}(R_1)^*$, $y ∈ Z_{I_2}(R_2)^*$, $m ∈ reg_{I_1}(R_1)$, $n ∈ reg_{I_2}(R_2)$. Then $(x, n)(m, y) \notin I_1 × I_2$. Since diam(Γ_{I₁×I₂}(R₁ × R₂)) = 2, there exists $(a, b) ∈ Z_{I_1 × I_2}(R_1 × R_2)^*$ such that $(x, n)(a, b), (m, y)(a, b) ∈ I_1 × I_2$. Then $ma ∈ I_1$ and $nb ∈ I_2$, so $(a, b) ∈ I_1 × I_2$, a contradiction. - (iii) Follows from (i) and (ii). **Theorem 3.12.** Let R_1 and R_2 be commutative rings with ideals I_1 and I_2 , respectively, such that $\operatorname{diam}(\Gamma_{I_1}(R_1)) = 1$ and $\operatorname{diam}(\Gamma_{I_2}(R_2)) = 3$. Then: - (i) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 1$. - (ii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$ if and only if $R_1 = Z_{I_1}(R_1)$. - (iii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$ if and only if $R_1 \neq Z_{I_1}(R_1)$. *Proof.* (i) Same as Theorem 3.6 (i). - (ii) (\Leftarrow) Same as Theorem 3.11 (ii). - (⇒) Assume that diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) = 2 and $R_1 \neq Z_{I_1}(R_1)$. Let $m \in \text{reg}_{I_1}(R_1)$. Since diam($\Gamma_{I_2}(R_2)$) = 3, there exist distinct $y_1, y_2 \in Z_{I_2}(R_2)^*$ with $y_1y_2 \notin I_2$, and there is no $y_3 \in Z_{I_2}(R_2)^*$ such that $y_1y_3, y_2y_3 \in I_2$. Now $(m, y_1), (m, y_2) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$, and $(m, y_1)(m, y_2) \notin I_1 \times I_2$. Since diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$, there exists $(a,b) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$ such that $(m, y_1)(a, b), (m, y_2)(a, b) \in I_1 \times I_2$. Then $ma \in I_1$, so we have $a \in I_1$. Also, $y_1b, y_2b \in I_2$. Hence, $b \in I_2$. Thus, $(a, b) \in I_1 \times I_2$, a contradiction. (iii) By (i) and (ii). **Theorem 3.13.** Let R_1 and R_2 be commutative rings with ideals I_1 and I_2 , respectively, such that $diam(\Gamma_I(R_1)) = diam(\Gamma_I(R_2)) = 2$. Then: - (i) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) > 1$ - (ii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$ if and only if $R_1 = Z_{I_1}(R_1)$ or $R_2 = Z_{I_2}(R_2)$ - (iii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$ if and only if $R_1 \neq Z_{I_1}(R_1)$ and $R_2 \neq Z_{I_2}(R_2)$ Proof. (i) Same as Theorem 3.6 (i). (ii) (\Leftarrow) Without loss of generality, let $R_1 = Z_{I_1}(R_1)$. Since $R_1 = Z_{I_1}(R_1)$, by Lemma 3.2, for all $x_1, x_2 \in Z_{I_1}(R_1)$, there exists $x_3 \in R_1 - I_1$ such that $x_3x_1, x_3x_2 \in I_1$. So for all $(x_1, y_1), (x_2, y_2) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$, there exists $(x_3,0) \in Z_{I_1 \times I_2}(R_1 \times R_2)^*$ such that $(x_1,y_1)(x_3,0) \in I_1 \times I_2$. If without loss of generality $(x_2, y_2) = (x_3, 0)$ then $(x_1, y_1)(x_2, y_2) \in I_1 \times$ I_2 . Thus diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) \leq 2$ and by (i), diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$. (\Rightarrow) Same as Theorem 3.11 (ii). (iii) By (i) and (ii). **Theorem 3.14.** Let R_1 and R_2 be commutative rings with ideals I_1 and I_2 , respectively, such that $\operatorname{diam}(\Gamma_{I_1}(R_1)) = 2$ and $\operatorname{diam}(\Gamma_{I_2}(R_2)) = 3$. Then: - (i) diam($\Gamma_{I_1 \times I_2}(R_1 \times R_2)$) > 1. - (ii) diam $(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 2$ if and only if $R_1 = Z_{I_1}(R_1)$. - (iii) $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$ if and only if $R_1 \neq Z_{I_1}(R_1)$. Proof. (i) Same as Theorem 3.6 (i). - (ii) (\Leftarrow) Same as Theorem 3.13 (ii). - (\Rightarrow) Let diam $(\Gamma_{I_1\times I_2}(R_1\times R_2))=2$. Assume that $R_1\neq Z_{I_1}(R_1)$. Let $k \in \operatorname{reg}_{I_1}(R_1)$. Since $\operatorname{diam}(\Gamma_{I_2}(R_2)) = 3$, we know that we can find a minimal path $$y_1 - y_2 - y_3 - y_4$$ where $d(y_1, y_4) = 3$. Similarly, we know that that since $\Gamma_{I_1}(R_1)$ has diameter 2, we can find x_1 and x_2 such that x_1 is adjacent to x_2 . Then consider the following path in $\Gamma_{I_1 \times I_2}(R_1 \times R_2)$: $$(k, y_1) - (0, y_2) - (x_1, y_3) - (x_2, y_4)$$ Note that (k, y_1) can't be adjacent to (x_2, y_4) since $k \in \operatorname{reg}_{I_1}(R_1)$. Then there must exist some (a, b) such that $(k, y_1)(a, b) \in I_1 \times I_2$ and $(a, b)(x_2, y_4) \in$ $I_1 \times I_2$. Note that this forces $a \in I_1$. Then b can't be in I_2 . But then $d(y_1, y_4) = 2$, which is a contradiction. Thus $R_1 = Z_{I_1}(R_1)$. (iii) By (i) and (ii). **Theorem 3.15.** Let R_1 and R_2 be commutative rings with ideals I_1 and I_2 , respectively, such that $\operatorname{diam}(\Gamma_{I_1}(R_1)) = \operatorname{diam}(\Gamma_{I_2}(R_2)) = 3$. Then $\operatorname{diam}(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$. *Proof.* Since diam $(\Gamma_{I_1}(R_1)) = 3$, there exist vertices $x_1, x_2, x_3, x_4 \in \Gamma_{I_1}(R_1)$ such that there is a minimal path $$x_1 - x_2 - x_3 - x_4$$ and $d(x_1, x_4) = 3$. Similarly, we can find vertices $y_1, y_2, y_3, y_4 \in \Gamma_{I_2}(R_2)$ such that there is a minimal path $$y_1 - y_2 - y_3 - y_4$$ and $d(y_1, y_4) = 3$. Now consider the following path in $\Gamma_{I_1 \times I_2}(R_1 \times R_2)$; $$(x_1, y_1) - (x_2, y_2) - (x_3, y_3) - (x_4, y_4)$$ Assume that $d((x_1, y_1), (x_4, y_4)) < 3$. Then there are two cases: - (x_1, y_1) is adjacent to (x_4, y_4) . But this would imply that x_1 was adjacent to x_4 in $\Gamma_{I_1}(R_1)$, which would contradict the fact that $d(x_1, x_4) = 3$. - (x_1, y_1) is adjacent to some (a, b) which is adjacent to (x_4, y_4) . Assume $a \in I_1$. But then $y_1b \in I_2$ and $by_4 \in I_2$ which would imply that in $\Gamma_{I_2}(R_2)$, we would have the path $$y_1 - b - y_4$$ which contradicts $d(y_1, y_4) = 3$. We get a similar contradiction if $b \in I_2$. Thus $d((x_1, y_1), (x_4, y_4)) \geq 3$. Since the diameter of a ideal-divisor graph is always bounded by 3, we get that $diam(\Gamma_{I_1 \times I_2}(R_1 \times R_2)) = 3$. ## References - [1] Anderson, D. and Livingston, P., The Zero-Divisor Graph of a Commutative Ring, J. Algebra 217 (1999), 434-447. - [2] Axtell, M., Stickles, J., and Warfel, J., Zero-Divisor Graphs of Direct Products of Commutative Rings, *Houston Journal of Mathematics* (to appear). - [3] Beck, I., Coloring of Commutative Rings, J. Algebra 116 (1988), 208-226. - [4] Redmond, S., An Ideal-Based Zero-Divisor Graph of a Commutative Ring, Comm. Alg. Vol. 31, No. 9 (2003), 4425-4443. HARVEY MUDD COLLEGE E-mail address: tbrand@hmc.edu HARVEY MUDD COLLEGE $E ext{-}mail\ address: mjameson@hmc.edu}$ JOHN CARROLL UNIVERSITY $E ext{-}mail\ address: mmcgowan05@jcu.edu}$ University of Evansville $E ext{-}mail\ address: jm285@evansville.edu}$