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Abstract. For a commutative ring R, we can form the zero-divisor graph

Γ(R) or the ideal-divisor graph ΓI(R) with respect to an ideal I of R. We con-
sider the diameters of direct products of zero-divisor and ideal-divisor graphs.

1. Introduction and Definitions

The concept of a zero-divisor graph was first introduced in 1988 in [3] by Beck,
who was interested in the coloring of the zero-divisor graph. However, we use the
slightly altered definition of a zero-divisor graph offered by Anderson and Livingston
in [1]. Anderson and Livingston also proved that the diameter of Γ(R) is less than
or equal to three for all commutative rings R. This knowledge of small diameter of
zero-divisor graphs led Axtell, Stickles, and Warfel to find necessary and sufficient
conditions for the direct product of two commutative rings R1 and R2 to have
various diameters in [2].

Given a commutative ring R, recall that the set of zero-divisors Z(R) is the set
{x ∈ R | there exists y ∈ R∗ such that xy = 0}, where R∗ = R − {0}. Also,
Z(R)∗ = Z(R)−{0}. Finally, we define regular elements to be reg(R) = R−Z(R)
and the annihilator of a zero-divisor x to be ann(x) = {y ∈ Z(R)∗ | xy = 0}. We
can define the zero-divisor graph of R, Γ(R), as follows: x ∈ Γ(R) if and only if
x ∈ Z(R)∗, and x, y ∈ Γ(R) are adjacent if and only if xy = 0. Furthermore, we
can define the diameter of any graph diam(Γ) = max{d(x, y) | x and y are distinct
vertices of Γ(R)}.

For the sake of generalization we can think of {0} as an ideal of the ring R.
Given a commutative ring R and any ideal I of R, we define the ideal-divisors of
R with respect to I as ZI(R) = {x ∈ R | there exists y ∈ R− I such that xy ∈ I}.
Furthermore, we can define ZI(R)∗ as ZI(R)− I. Also, regI(R) = R− ZI(R) and
annI(x) = {y ∈ ZI(R)∗ | xy ∈ I}. We can define the ideal-divisor graph of R,
ΓI(R), by letting x be an element of ΓI(R) if and only if x is an element of ZI(R)∗;
x and y in ΓI(R) are adjacent if and only if xy is an element of I.

The ideal-divisor graph was first discussed by Redmond in [4]. He was able to
generalize many of the concepts and theorems of the zero-divisor graph to the ideal-
divisor graph. In particular, Redmond showed that the diameter of ΓI(R) is less
than or equal to three for all commutative rings R and I an arbitrary ideal of R.

In this paper we complete the classification done by Axtell, Stickles, and Warfel
in [2] to include direct products of commutative rings that have diameter zero and
generalize the entire classification to ideal-divisor graphs.
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2. Ideal-Divisor Graphs of Direct Products

We begin with some necessary lemmas generalized from similar lemmas used by
Axtell, Stickles, and Warfel.

Lemma 2.1. Let R1 and R2 be rings with ideals I1 and I2, respectively, with
ZI1(R1)∗ 6= ∅ or ZI2(R2)∗ 6= ∅ (or both). If regI1

(R1) 6= ∅ and regI2
(R2) 6= ∅,

then diam(ΓI1×I2(R1 ×R2)) = 3.

Proof. Without loss of generality, let a ∈ ZI1(R1)∗. Then there exists b ∈ ZI1(R1)∗

such that ab ∈ I1. Let r1 ∈ regI1
(R1), r2 ∈ regI2

(R2). Then

(r1, 0)− (0, r2)− (a, 0)− (b, r2)

is a path of length 3. Assume there is a shorter path from (r1, 0) to (b, r2). Clearly,
(r1, 0)(b, r2) /∈ I1 × I2, so there is no path of length 1. Assume there exists (x, y) ∈
ZI1×I2(R1 × R2)∗ such that (x, y)(r1, 0), (x, y)(b, r2) ∈ I1 × I2. Then xr1 ∈ I1 and
yr2 ∈ I2, which gives x ∈ I1 and y ∈ I2, a contradiction. Hence, diam(ΓI1×I2(R1 ×
R2)) = 3. �

Lemma 2.2. If R1 = I1 and diam(ΓI2(R2)) > 0, then diam(ΓI1×I2(R1 × R2)) =
diam(ΓI2(R2)).

Proof. Let R1 = I1 and let diam(ΓI2(R2)) > 0.
• Suppose diam(ΓI1×I2(R1 × R2)) = n > diam(ΓI2(R2)) such that n = 2

or 3. Then ∃(a0, x0), (a1, x1), ..., (an, xn) ∈ ZI1×I2(R1 × R2)∗ such that
(a0, x0)− (a1, x1)− ...− (an, xn) is a minimal path. Then x0−x1− ...−xn,
but since n > diam(ΓI2(R2)), x0 − x1 − ... − xn must not be a minimal
path. This can happen in two ways:

– If ∃i, j such that 0 ≤ i < j ≤ n, j 6= i + 1, and xi−xj . Then (ai, xi)−
(aj , xj), a contradiction of (a0, x0) − (a1, x1) − ... − (an, xn)being a
minimal path.

– If n = 3 and ∃y ∈ ZI2(R2)∗ such that y /∈ {xi | 0 ≤ i ≤ n} and
x0−y−xn. Then (a0, x0)−(0, y)−(an, xn), a contradiction of (a0, x0)−
(a1, x1)− ...− (an, xn)being a minimal path.

So diam(ΓI1×I2(R1 ×R2)) ≤ diam(ΓI2(R2)).
• Suppose diam(ΓI1×I2(R1×R2)) < diam(ΓI2(R2)) = n such that 1 ≤ n ≤ 3.

Then ∃x0, x1, ..., xn ∈ ZI2(R2)∗ such that x0 − x1 − ... − xn is a minimal
path. Since R1 = I1, ∀a0, a1, ..., an ∈ R1, (a0, x0)−(a1, x1)− ...−(an, xn) is
a minimal path of length n, a contradiction. So diam(ΓI1×I2(R1 × R2)) ≥
diam(ΓI2(R2)).

Thus diam(ΓI1×I2(R1 ×R2)) = diam(ΓI2(R2)). �

Lemma 2.3. (Analogue to ASW Lemma 2.2) Let R be a commutative ring with
ideal I. If R = ZI(R) and diam(ΓI(R)) = 1, then R2 ⊆ I.

Proof. Note that for all x, y ∈ R with x 6= y, xy ∈ I because diam(ΓI(R)) = 1.
Assume that a2 /∈ I for some a ∈ R. Let b ∈ ZI(R)∗ with b 6= a. Observe
that a + b 6= a. Since R = ZI(R) and diam(ΓI(R)) = 1, we have ab ∈ I. So,
a(a + b) = a2 + ab ∈ I, which implies a2 ∈ I, a contradiction. �

Theorem 2.4. Let R1, R2 be commutative rings such that diam(Γ(R1)) = diam(Γ(R2)) =
0. Then
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(i) diam(Γ(R1 ×R2)) = 0 if and only if (without loss of generality) R1 = {0}.
(ii) diam(Γ(R1 ×R2)) = 1 if and only if |R1| = |R2| = 2 and R1

∼= R2.
(iii) diam(Γ(R1×R2)) = 3 if and only if R1 6= Z(R1), R2 6= Z(R2), and (without

loss of generality) |Z(R1)∗| = 1.
(iv) diam(Γ(R1 ×R2)) = 2 otherwise.

Proof. (i) (⇒) Assume for contradiction that diam(Γ(R1 × R2)) = 0 and
R1, R2 6= {0}. Then ∃x ∈ R∗1, y ∈ R∗2. Now (x, 0) and (0, y) are two ad-
jacent vertices in Γ(R1 ×R2), so diam(Γ(R1 ×R2)) > 0.
(⇐) Assume without loss of generality that R1 = {0}. Then R1×R2

∼= R2,
so diam(Γ(R1 ×R2)) = 0.

(ii) (⇒) Assume diam(Γ(R1 ×R2)) = 1.
• Assume without loss of generality |R1| 6= 2. If |R1| = 1, then R1 = {0},

so diam(Γ(R1×R2)) = 0 by part (i). Thus assume |R1| ≥ 3. Thus we
have distinct x, y ∈ R∗1. Note that xy 6= 0 because diam(Γ(R1)) = 0.
Also, note that |R2| > 1 by part (i) also. Let z ∈ R∗2. Now, we have
path

(x, 0)− (0, z)− (y, 0)
which is minimal since xy 6= 0. Thus diam(Γ(R1 ×R2)) ≥ 2.

• Assume R1 � R2. By argument above, |R1| = |R2| = 2. Recall that
there are only two rings of order two: Z2 and 2Z4. Since diam(Γ(Z2×
2Z4)) = 2, we have a contradiction. Thus R1

∼= R2.
(⇐) Assume |R1| = |R2| = 2 and R1

∼= R2. Since there are only two rings
of order two, and diam(Γ(2Z4 × 2Z4)) = 1 = diam(Γ(Z2 × Z2)) = 1, then
diam(Γ(R1 ×R2)) = 1.

(iii) (⇒) Assume diam(Γ(R1 ×R2)) = 3.
• Assume without loss of generality that Z(R1) = R1. Also |R1| > 1 by

part (i). Thus, since diam(Γ(R1)) = 0, R1
∼= 2Z4. Then every vertex

in Γ(R1 ×R2) is adjacent to (x, 0), where x ∈ R∗1. Then diam(Γ(R1 ×
R2)) ≤ 2. This is a contradiction, of diam(Γ(R1 × R2)) = 3, so
R1 6= Z(R1) and R2 6= Z(R2).

• Assume Γ(R1) = Γ(R2) = K0, the graph with no vertices. Thus
Z(R1)∗ = Z(R2)∗ = ∅. Thus every vertex in Γ(R1 × R2) must be
of the form (x, 0) or (0, y), where x ∈ reg(R1), y ∈ reg(R2). Thus
Γ(R1 ×R2) is complete bipartite, so diam(Γ(R1 ×R2)) ≤ 2.

(⇐) By Lemma 2.1.
(iv) Follows from (i), (ii), (iii).

�

3. Ideal-Divisor Graphs of Direct Products (Diameter Zero By N)

Lemma 3.1. Let ΓI(R) be the ideal-divisor graph of R with respect to an ideal I
such that ΓI(R) has exactly one vertex. Then I = {0}.

Proof. Assume ΓI(R) as above. Then ∃x ∈ ZI(R)∗ such that x2 ∈ I. Let i ∈ I.
Now (x+ i)x = x2 + ix ∈ I. Thus, since there is only one vertex in ΓI(R), we know
that x + i = x, so i = 0. Thus I = {0}. �

Lemma 3.2. (Analogue to ASW Lemma 2.3) Let R be a commutative ring with
ideal I such that diam(ΓI(R)) = 2. Suppose ZI(R) is a (not necessarily proper)
subring of R. Then for all x, y ∈ ZI(R), there exists a z /∈ I such that xz, yz ∈ I.
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Proof. Let x, y ∈ ZI(R). If x ∈ I, then simply choose z such that yz ∈ I. We can
similarly find z if y ∈ I or if x = y. Thus we assume x, y are distinct and not in I.
Since diam(ΓI(R)) = 2, if xy 6∈ I, we know that there exists some z ∈ ZI(R)∗ such
that xz, yz ∈ I. So assume xy ∈ I. If x2 ∈ I, then clearly we can choose z = x. A
similar situation exists if y2 ∈ I. Therefore we may also assume that x2, y2 6∈ I.

Let X = {x′ ∈ ZI(R)∗ | xx′ ∈ I} and Y = {y′ ∈ ZI(R)∗ | yy′ ∈ I}. Note that
since x ∈ Y and y ∈ X, these sets are not empty. Furthermore, if X ∩Y 6= ∅, then
choosing z ∈ X ∩ Y will suffice.

Thus assume that X ∩Y = ∅. Consider the element x + y. Obviously x + y 6= x
and x + y 6= y. If x + y ∈ I, then x(x + y) ∈ I which implies that x2 ∈ I. Thus
x + y /∈ I. Thus x + y ∈ ZI(R)∗ since ZI(R) is a subring. Furthermore, since
x2, y2 6∈ I, we know that x + y 6∈ X and x + y 6∈ Y . But the diameter of ΓI(R) is 2,
so we know that we can find some w ∈ X such that xw ∈ I, w(x+y) ∈ I. But then
w(x+y) ∈ I which implies that wy ∈ I, so w ∈ X∩Y , which is a contradiction. �

Theorem 3.3. Let R1, R2 be commutative rings and I1, I2 be their respective ideals
such that diam(ΓI1(R1)) = diam(ΓI2(R2)) = 0. Then

(i) diam(ΓI1×I2(R1×R2)) = 0 if and only if (without loss of generality) I1 = R1

and either R1 = {0} or I2 is a prime ideal
(ii) diam(ΓI1×I2(R1 × R2)) = 1 if and only if (without loss of generality) I1 =
{0} and either ZI1(R1)∗ 6= ∅ with I2 = R2 6= {0} or R1

∼= R2 with |R1| = 2
(iii) diam(ΓI1×I2(R1×R2)) = 3 if and only if R1 6= ZI1(R1), R2 6= ZI2(R2) and

(without loss of generality) |ZI1(R1)∗| = 1.
(iv) diam(ΓI1×I2(R1 ×R2)) = 2 otherwise.

Proof. (i) (⇒) Assume diam(ΓI1×I2(R1 ×R2)) = 0.
Now, if regI1

(R1), regI2
(R2) 6= ∅, then ∃x ∈ regI1

(R1), y ∈ regI2
(R2).

Then (x, 0)(0, y) = 0 ∈ I1×I2, which is a contradiction of diam(ΓI1×I2(R1×
R2)) = 0. Thus, without loss of generality, regI1

(R1) = ∅, so R1 = I1.
• If ΓI1×I2(R1 ×R2) = K0, then I1 × I2 is a prime ideal. Now, consider

ab ∈ I2. Then (0, a)(0, b) ∈ I1×I2. Since I1×I2 is prime, (0, a) ∈ I1×I2

or (0, b) ∈ I1 × I2.Thus a ∈ I2 or b ∈ I2. Thus I2 is a prime ideal.
• If ΓI1×I2(R1 ×R2) has one vertex, then I1 × I2 = {0}, by Lemma 3.1.

Then I1 = I2 = {0}, and ΓI1×I2(R1×R2) = Γ(R1×R2). By Theorem
2.4, then without loss of generality, R1 = {0}.

(⇐) Assume I1 = R1 and either R1 = {0} or I2 is a prime ideal.
• Let I1 = R1 = {0}. If diam(ΓI1×I2(R1 × R2)) > 0,∃(0, y1), (0, y2) /∈

I1×I2 such that (0, y1)(0, y2) ∈ I1×I2. Then y1, y2 /∈ I2 and y1y2 ∈ I2,
so diam(ΓI2(R2)) > 0. This is a contradiction, so diam(ΓI1×I2(R1 ×
R2)) = 0.

• Let I1 = R1, and I2 be a prime ideal of R2. If diam(ΓI1×I2(R1 ×
R2)) > 0, then there exist distinct (x1, y1), (x2, y2) /∈ I1× I2 such that
(x1, y1)(x2, y2) ∈ I1 × I2. Since R1 = I1, we have y1, y2 /∈ I2 and
y1y2 ∈ I2. Thus I2 is not a prime ideal. This is a contradiction, so
diam(ΓI1×I2(R1 ×R2)) = 0.

(ii) (⇒) Assume diam(ΓI1×I2(R1 ×R2)) = 1.
• Assume ΓI1(R1) = ΓI2(R2) = K0. Since diam(ΓI1×I2(R1×R2)) = 1,∃

vertices (x, 0), (0, y) ∈ ZI1×I2(R1 × R2)∗. Thus ∃x ∈ regI1
(R1), y ∈

regI2
(R2). For all i ∈ I1, (x + i, 0)(0, y) ∈ I1× I2, and (x + i, 0)(x, 0) /∈
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I1×I2. This implies that (x+i, 0) = (x, 0), so i = 0 and thus I1 = {0}.
Similarly, I2 = {0}. By Theorem 2.4, |R1| = |R2| = 2 and R1

∼= R2.
• Assume ΓI1(R1) = K1 and ΓI2(R2) = K0. By Lemma 3.1, I1 = {0}.

Let x ∈ ZI1(R1)∗ (x must exist since ΓI1(R1) = K1). If R2 6= I2,∃y ∈
regI2

(R2). Then (x, 0)(x, y) ∈ I1 × I2 and (x, 0)(0, y) ∈ I1 × I2, but
(x, y)(0, y) /∈ I1 × I2. Thus diam(ΓI1×I2(R1 × R2)) ≥ 2. So I2 = R2.
Also note that I2 6= {0} (since I2 = {0} would imply diam(ΓI1×I2(R1×
R2)) = 0 by part (i) above).

• Assume ΓI1(R1) = ΓI2(R2) = K1. By Lemma 3.1, I1 = I2 = {0}, so
|R1| = |R2| = 2 and R1

∼= R2 by Theorem 2.4.
(⇐)
• Assume that I1 = {0} and R1

∼= R2 with |R1| = 2. Thus diam(ΓI1×I2(R1×
R2)) = 1 by Theorem 2.4.

• Assume that I1 = {0} and ZI1(R1)∗ 6= ∅ with I2 = R2 6= {0}. Let
x ∈ ZI1(R1)∗. Thus, for all vertices (x, y1), (x, y2) ∈ ZI2×I2(R1 ×R2)∗

(we know y1, y2 ∈ I2, so the first entry must indeed be x), it’s clear
that (x, y1)(x, y2) ∈ I1 × I2. Also, there are at least two vertices since
I2 6= {0}, so diam(ΓI1×I2(R1 ×R2)) = 1.

(iii) (⇒)Assume diam(ΓI1×I2(R1 ×R2)) = 3.
• Assume ΓI1(R1) = ΓI2(R2) = K0. Then ZI1(R1)∗ = ZI2(R2)∗ =
∅. Now, consider (x1, y1), (x2, y2) ∈ ZI1×I2(R1 × R2)∗ such that
d((x1, y1), (x2, y2)) = 3. Since (x1, y1) /∈ I1×I2, assume without loss of
generality that x1 ∈ regI1

(R1). Then y1 ∈ I2. Similarly, x2 ∈ regI1
(R1)

or y2 ∈ regI2
(R2).

- If x2 ∈ regI1
(R1), then y2 ∈ I2 because (x2, y2) ∈ ZI1×I2(R1 ×

R2)∗. Let (a, b) be a vertex adjacent to (x1, y1). We know that
x1a ∈ I1, so a ∈ I1. Thus (a, b)(x2, y2) ∈ I1× I2 since a ∈ I1 and
y2 ∈ I2. Thus d((x1, y1), (x2, y2)) = 2.

- If y2 ∈ regI2
(R2), then x2 ∈ I1. Thus (x1, y1)(x2, y2) ∈ I1 × I2,

so d((x1, y1), (x2, y2)) = 1.
In either case, we have a contradiction.

• Assume ΓI1(R1) = K1 and ΓI2(R2) = K0. I1 = {0} by Lemma 3.1. If
R2 = ZI2(R2), then R2 = I2. Let x ∈ ZI1(R1)∗. Since R2 = ZI2(R2),
the set of vertices is ZI1×I2(R1×R2) = {(x, i) | i ∈ I2}, all of which are
adjacent to each other by definition. So ΓI1×I2(R1×R2) = K|R2|. This
is a contradiction of diam(ΓI1×I2(R1 ×R2)) = 3, so R2 6= ZI2(R2).
If R1 = ZI1(R1), then (x, 0) is adjacent to all other vertices in ΓI1×I2(R1×
R2), where x ∈ ZI1(R1)∗. Thus diam(ΓI1×I2(R1 × R2)) ≤ 2. Thus
R1 6= ZI1(R1).

• Assume ΓI1(R1) = ΓI2(R2) = K1. Then I1 = I2 = {0} by Lemma 3.1,
so R1 6= ZI1(R1) and R2 6= ZI2(R2) by Theorem 2.4.

(⇐) Assume R1 6= ZI1(R1), R2 6= ZI2(R2), ΓI1(R1) = K1 and diam(ΓI1×I2(R1×
R2)) 6= 3. Let x1 ∈ regI1

(R1), x2 ∈ ZI1(R1)∗, and y ∈ regI2
(R2). Consider

the distinct vertices (x1, 0) and (x2, y). Clearly, (x1, 0)(x2, y) /∈ I1 × I2 by
construction. Thus ∃(a, b) ∈ ZI1×I2(R1 × R2)∗ such that (a, b)(x1, 0) ∈
I1 × I2 and (a, b)(x2, y) ∈ I1 × I2. Since x1a ∈ I1 and yb ∈ I2, then
(a, b) ∈ I1× I2, which is a contradiction. Thus diam(ΓI1×I2(R1×R2)) = 3.

(iv) Follows from (i), (ii), (iii).
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�

Theorem 3.4. Let diam(ΓI1(R1)) = 0 and diam(ΓI2(R2)) = 1.
(i) diam(Γ(R1 ×R2)) > 0.
(ii) diam(Γ(R1×R2)) = 1 if and only if both R2

1 ⊆ I1 and R2
2 ⊆ I2 or R1 = I1.

(iii) diam(Γ(R1×R2)) = 2 if and only if R1 6= I1 and (without loss of generality)
R2

1 ⊆ I1 and R2
2 * I2.

(iv) diam(Γ(R1 ×R2)) = 3 if and only if R2
1 * I1 and R2

2 * I2.

Proof. Let diam(ΓI1(R1)) = 0 and diam(ΓI2(R2)) = 1.
(i) Let x, y ∈ Z∗I2

(R2) such that x 6= y and xy ∈ I2. Then (0, x)(0, y) =
(0, xy) ∈ I1 × I2, so diam(ΓI1×I2(R1 ×R2)) > 0.

(ii) (⇒) Let diam(ΓI1×I2(R1 ×R2)) = 1.
• Suppose R2

1 * I1, then ∃a, b ∈ R1 such that ab /∈ I1. Clearly a, b /∈
I1. Let c ∈ Z∗I2

(R2). Then (a, c), (b, 0) ∈ Z∗I1×I2
(R1 × R2), but

(a, c)(b, 0) = (ab, 0) /∈ I1 × I2, so d((a, c), (b, 0)) > 1, a contradiction.
• Suppose R2

2 * I2, then ∃a, b ∈ R2 such that ab /∈ I2. Clearly a, b /∈ I2.
If Z∗I1

(R1) 6= ∅, let c ∈ Z∗I1
(R1). Then (c, a), (0, b) ∈ Z∗I1×I2

(R1×R2),
but (c, a)(0, b) = (0, ab) /∈ I1 × I2, so d((c, a), (0, b)) > 1, a contradic-
tion. Thus ZI1(R1)∗ = ∅, so consider R1 − I1. If R1 − I1 6= ∅, then
R2

1 * I1, a contradiction from earlier. Thus R1 − I1 = ∅, so R1 = I1.
(⇐)
• Suppose R1 = I1. By Lemma 2.2, diam(ΓI1×I2(R1×R2)) = diam(ΓI2(R2)) =

1.
• Suppose R2

1 ⊆ I1 and R2
2 ⊆ I2. Then for all (a, b), (c, d) ∈ ZI1×I2(R1×

R2)∗, since ac ∈ I1 and bd ∈ I2, (ac, bd) ∈ I1×I2, so diam(ΓI1×I2(R1×
R2)) = 1.

(iii) (⇒) Let diam(ΓI1×I2(R1 ×R2)) = 2.
• By contrapositive of Lemma 2.2, R1 6= I1.
• Suppose ZI1(R1)∗ 6= ∅. Assume regI1(R1), regI2(R2) 6= ∅. Let a ∈

regI1
(R1), b ∈ regI2

(R2), c ∈ ZI1(R1)∗, d ∈ ZI2(R2)∗. Since a is reg-
ular, we need an element from I1 in the first component to kill a,
and since b is regular, we need an element from I2 in the second
component to kill b. Then annI1×I2((a, d)) = {(i, l) | dl ∈ I2 and
i ∈ I1} and annI1×I2((c, b)) = {m, i) | cm ∈ I1 and i ∈ I2}. Since
annI1×I2((a, d)) ∩ annI1×I2(c, b) = I1 × I2, only trivial elements (ele-
ments in I1 × I2) can kill both (a, d) and (c, b), so d((a, d), (c, b)) > 2,
a contradiction. Thus either regI1

(R1) = ∅ or regI2
(R2) = ∅.

– Suppose regI2
(R2) = ∅. Then R2 = ZI2(R2) and by Lemma

2.3, R2
2 ⊆ I2. By ii), R2

1 * I1.
– Now suppose regI1

(R1) = ∅. Since diam(ΓI1(R1)) = 0 and
ZI1(R1)∗ 6= ∅, ΓI1(R1) = K1. Then ZI1(R1)∗ = {a}, a2 ∈ I1,
and R1 = {0, a}. Then R2

1 ⊆ I1, and by ii), R2
2 6= 0.

• Suppose ZI1(R1)∗ = ∅. Then since R1 6= I1, regI1(R1) 6= ∅, and
R2

1 * I1. Assume regI2
(R2) 6= ∅. Let a ∈ regI1

(R1), x ∈ ZI2(R2)∗, r ∈
regI2

(R2). Then (a, x), (0, r) ∈ ZI1×I2(R1 × R2)∗. Since a is regular,
we need an element from I1 in the first component to kill it a, and since
r is regular, we need an element from I2 in the second component to
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kill r. Then annI1×I2((a, x)) = {(i, y) | xy ∈ I2 and i ∈ I1} and
annI1×I2((0, r)) = {(b, i) | b ∈ R1 and i ∈ I2}. Since annI1×I2((a, x))∩
annI1×I2((0, r)) = I1 × I2, only trivial elements (elements in I1 × I2)
can kill both (a, x) and (0, r), so d((a, x), (0, r)) > 2, a contradiction.
Thus regI2

(R2) = ∅, so R2 = ZI2(R2) and by Lemma 2.3, R2
2 ⊆ I2.

(⇐) Assume R2
1 ⊆ I1, R2

2 * I2, and R1 6= I1. Let c ∈ R1−I1. Then (c, 0) is
adjacent to every vertex in ΓI1×I2(R1×R2), so diam(ΓI1×I2(R1×R2)) ≤ 2.
Then from i), diam(ΓI1×I2(R1 ×R2)) 6= 1, so diam(ΓI1×I2(R1 ×R2)) = 2.
Assume R2

1 * I1 and R2
2 ∈ I2. Let c ∈ R2 − I2. Then (0, c) is adjacent to

every vertex in ΓI1×I2(R1×R2), so diam(ΓI1×I2(R1×R2)) ≤ 2. Then from
i), diam(ΓI1×I2(R1 ×R2)) 6= 1, so diam(ΓI1×I2(R1 ×R2)) = 2.

(iv) Follows from (i), (ii), and (iii).
�

Corollary 3.5. Let diam(Γ(R1)) = 0 and diam(Γ(R2)) = 1.
(i) diam(Γ(R1 ×R2)) > 0.

(ii) diam(Γ(R1 ×R2)) = 1 if and only if R2
1 = 0 = R2

2 or R1 = {0}.
(iii) diam(Γ(R1 × R2)) = 2 if and only if R1 6= {0} and (without loss of gener-

ality) R2
1 = 0 and R2

2 6= 0.
(iv) diam(Γ(R1 ×R2)) = 3 if and only if R2

1, R
2
2 6= 0.

Theorem 3.6. Let R1 and R2 be rings with ideals I1 and I2, respectively, such
that diam(ΓI1(R1)) = 0 and diam(ΓI2(R2)) = 2. Then:

(i) diam(ΓI1×I2(R1 ×R2)) > 1.
(ii) diam(ΓI1×I2(R1 ×R2)) = 2 if and only if R1 = ZI1(R1) or R2 = ZI2(R2).
(iii) diam(ΓI1×I2(R1×R2)) = 3 if and only if R1 6= ZI1(R1) and R2 6= ZI2(R2).

Proof. (i) Since diam(ΓI2(R2)) ≥ 2, there exist distinct y1, y2 ∈ ZI2(R2)∗

with y1y2 /∈ I2. Then (0, y1)(0, y2) = (0, y1y2) /∈ I1 × I2. Therefore
diam(ΓI1×I2(R1 ×R2)) > 1.

(ii) (⇐) Let R1 = ZI1(R1) (the proof of Theorem 3.13 satisfies the case where
R2 = ZI2(R2)). Since diam(ΓI1(R1)) = 0, either R1 = I1 or R1 = I1 ∪ {a},
where a2 ∈ I1. Thus, R2

1 ⊆ I1. Therefore, (r, 0)(x, y) ∈ I1 × I2 for all
r ∈ R1, (x, y) ∈ ZI1×I2(R1 ×R2)∗. Hence, diam(ΓI1×I2(R1 ×R2)) ≤ 2. By
(i), diam(ΓI1×I2(R1 ×R2)) = 2.

(⇒) By the contrapositive of Lemma 2.1.
(iii) By (i) and (ii).

�

Corollary 3.7. Let R1 and R2 be rings with diam(Γ(R1)) = 0 and diam(Γ(R2)) =
2. Then:

(i) diam(Γ(R1 ×R2)) > 1.
(ii) diam(Γ(R1 ×R2)) = 2 if and only if R1 = Z(R1) or R2 = Z(R2).
(iii) diam(Γ(R1 ×R2)) = 3 if and only if R1 6= Z(R1) and R2 6= Z(R2).

Theorem 3.8. Let R1 and R2 be commutative rings. If diam(ΓI1(R1)) = 0 and
diam(ΓI2(R2)) = 3, then:

(i) diam(ΓI1×I2(R1 ×R2)) > 1.
(ii) diam(ΓI1×I2(R1 ×R2)) = 2 if and only if R1 = ZI(R1) 6= I1.
(iii) diam(ΓI1×I2(R1 ×R2)) = 3 if and only if R1 = I1 or R1 6= ZI(R1).
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Proof. (i) Same as Theorem 3.6 (i).
(ii) (⇒) Let diam(ΓI1×I2(R1×R2)) = 2. Assume that R1 6= ZI(R1). Note that

since diam(ΓI1×I2(R2)(R2) = 3), we can find a minimal path of length 3,

y1 − y2 − y3 − y4

We also know there exists r1 ∈ regI(R1). But then consider the path

(0, y1)− (r1, y2)− (0, y3)− (r1, y4)

Clearly none of the elements in the path are adjacent. If there exists some
(i, b) where i ∈ I1 such that

(0, y1)− (i, b)− (r1, y4)

is a path, this contradicts the fact that d(y1, y4) = 3. Thus that path must
be minimal as well. But this implies d((0, y1), (r1, y4)) = 3, a contradiction.
If ZI(R1) = I1, then if j ∈ I1, the path

(j, y1)− (j, y2)− (j, y3)− (j, y4)

is clearly minimal, so we get a contradiction here as well.
(⇐) Let R1 = ZI(R1) 6= I1. Then there exist a, b ∈ R1 (not necessarily
distinct) where ab ∈ I1. We know that we have the minimal path in ΓI2(R2)

y1 − y2 − y3 − y4

therefore the path (a, y1)− (b, y2)− (0, y3) is minimal, so diamΓI1×I2(R1×
R2)) ≥ 2. Note that since diam(ΓI1(R1)) = 0, if pq ∈ I1, then p = q. Since
R1 6= I1, we know that p exists. Thus all elements in ΓI1×I2(R1 × R2)
are of the form (j, r2) or (p, r2) for some r2 ∈ R2. Thus the element (p, 0)
is a bridge between any two other elements, so we know the diameter of
Γ(R1 ×R2) is exactly 2.

(iii) Follows from (i) and (ii).
�

Corollary 3.9. Let R1 and R2 be commutative rings. Then if diam(Γ(R1)) = 0
and diam(Γ(R2)) = 3 then:

(i) diam(Γ(R1 ×R2)) > 1.
(ii) diam(Γ(R1 ×R2)) = 2 if and only if R1 = Z(R1) 6= {0}.
(iii) diam(Γ(R1 ×R2)) = 3 if and only if R1 = {0} or R1 6= Z(R1).

Theorem 3.10. Let R1 and R2 be commutative rings with ideals I1 and I2, re-
spectively, such that diam(ΓI1(R1)) = diam(ΓI2(R2)) = 1. Then

(i) diam(ΓI1×I2(R1 ×R2)) = 1 if and only if R2
1 ⊆ I1 and R2

2 ⊆ I2.
(ii) diam(ΓI1×I2(R1×R2)) = 2 if and only if without loss of generality R2

1 ⊆ I1

and R2
2 * I2.

(iii) diam(ΓI1×I2(R1 ×R2)) = 3 if and only if R2
1 * I1 and R2

2 * I2.

Proof. (i) (⇒) Without loss of generality, let diam(ΓI1×I2(R1 ×R2)) = 1 and
R2

1 * I1. Then there exist x1, x2 ∈ R1 such that x1x2 /∈ I1. Therefore
(x1, 0)(x2, 0) /∈ I1 × I2, so diam(ΓI1×I2(R1 ×R2)) > 1.

(⇐) Let R2
1 ⊆ I1 and R2

2 ⊆ I2. Then for all (x1, y1), (x2, y2) ∈ R1 × R2,
we know that x1x2 ∈ I1 and y1y2 ∈ I2, so (x1, y1)(x2, y2) = (x1x2, y1y2) ∈
I1 × I2.
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(ii) (⇒) Assume diam(ΓI1×I2(R1 × R2)) = 2. If R2
1 ⊆ I1 and R2

2 ⊆ I2,
then diam(ΓI1×I2(R1 × R2)) = 1 by part (i), which forms a contradic-
tion. Thus assume R2

1 * I1 and R2
2 * I2. By Lemma 2.3, there must

exist x1 ∈ regI1
(R1), and y1 ∈ regI2

(R2). Let x2 ∈ ZI1(R1), y2 ∈
ZI2(R2) and consider the two elements (x1, y2), (x2, y1) ∈ ZI1×I2(R1×R2)∗.
Clearly (x1, y2)(x2, y1) = (x1x2, y1y2) /∈ I1 × I2 by choice of x1 and y1.
Since diam(ΓI1×I2(R1 × R2)) = 2, there must exist an element (a, b) ∈
ZI1×I2(R1×R2)∗ such that (x1, y2)(a, b) ∈ I1×I2 and (x2, y1)(a, b) ∈ I1×I2.
Thus x1a ∈ I1, so a ∈ I1. Similarly, y1b ∈ I2, so b ∈ I2. Thus (a, b) ∈ I1×I2,
so we have a contradiction.

(⇐) Assume without loss of generality that R2
1 ⊆ I1, R2

2 * I2. Then
diam(ΓI1×I2(R1×R2)) > 1 by part (i). Also, since R2

1 ⊆ I1, for all x1, x2 ∈
R1, x1x2 ∈ I1. Thus (x1, 0) is adjacent to every vertex in ΓI1×I2(R1×R2),
so a path of length 2 can be found between any two vertices in ΓI1×I2(R1×
R2) by way of the vertex (x1, 0). Thus diam(ΓI1×I2(R1 ×R2)) = 2.

(iii) Follows directly from parts (i) and (ii).
�

Theorem 3.11. Let R1 and R2 be commutative rings with ideals I1 and I2, re-
spectively, such that diam(ΓI1(R1)) = 1 and diam(ΓI2(R2)) = 2. Then:

(i) diam(ΓI1×I2(R1 ×R2)) > 1.
(ii) diam(ΓI1×I2(R1 ×R2)) = 2 if and only if R1 = ZI1(R1) or R2 = ZI2(R2).
(iii) diam(ΓI1×I2(R1×R2)) = 3 if and only if R1 6= ZI1(R1) and R2 6= ZI2(R2).

Proof. (i) Same as Theorem 3.6 (i).
(ii) (⇐) Let R1 = ZI1(R1) (the case where R2 = ZI2(R2) is addressed by

the proof of Theorem 3.13). Thus, we have R2
1 ⊆ I1 by Lemma 2.3. Let

a ∈ R∗1. Since (a, 0)(x, y) ∈ I1 × I2 for all (x, y) ∈ Z
(
I1×I2

R1 × R2)∗, we
have diam(ΓI1×I2(R1×R2)) ≤ 2. It follows from (i) that diam(ΓI1×I2(R1×
R2)) = 2.

(⇒) Assume that diam(ΓI1×I2(R1 ×R2)) = 2, R1 6= ZI1(R1), and R2 6=
ZI2(R2). Let x ∈ ZI1(R1)∗, y ∈ ZI2(R2)∗, m ∈ regI1

(R1), n ∈ regI2
(R2).

Then (x, n)(m, y) /∈ I1× I2. Since diam(ΓI1×I2(R1×R2)) = 2, there exists
(a, b) ∈ ZI1×I2(R1×R2)∗ such that (x, n)(a, b), (m, y)(a, b) ∈ I1× I2. Then
ma ∈ I1 and nb ∈ I2, so (a, b) ∈ I1 × I2, a contradiction.

(iii) Follows from (i) and (ii).
�

Theorem 3.12. Let R1 and R2 be commutative rings with ideals I1 and I2, re-
spectively, such that diam(ΓI1(R1)) = 1 and diam(ΓI2(R2)) = 3. Then:

(i) diam(ΓI1×I2(R1 ×R2)) > 1.
(ii) diam(ΓI1×I2(R1 ×R2)) = 2 if and only if R1 = ZI1(R1).

(iii) diam(ΓI1×I2(R1 ×R2)) = 3 if and only if R1 6= ZI1(R1).

Proof. (i) Same as Theorem 3.6 (i).
(ii) (⇐) Same as Theorem 3.11 (ii).

(⇒) Assume that diam(ΓI1×I2(R1 × R2)) = 2 and R1 6= ZI1(R1). Let
m ∈ regI1

(R1). Since diam(ΓI2(R2)) = 3, there exist distinct y1, y2 ∈
ZI2(R2)∗ with y1y2 /∈ I2, and there is no y3 ∈ ZI2(R2)∗ such that y1y3, y2y3 ∈
I2. Now (m, y1), (m, y2) ∈ ZI1×I2(R1 ×R2)∗, and (m, y1)(m, y2) /∈ I1 × I2.
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Since diam(ΓI1×I2(R1 × R2)) = 2, there exists (a, b) ∈ ZI1×I2(R1 × R2)∗

such that (m, y1)(a, b), (m, y2)(a, b) ∈ I1 × I2. Then ma ∈ I1, so we have
a ∈ I1. Also, y1b, y2b ∈ I2. Hence, b ∈ I2. Thus, (a, b) ∈ I1 × I2, a
contradiction.

(iii) By (i) and (ii).
�

Theorem 3.13. Let R1 and R2 be commutative rings with ideals I1 and I2, re-
spectively, such that diam(ΓI(R1)) = diam(ΓI(R2)) = 2. Then:

(i) diam(ΓI1×I2(R1 ×R2)) > 1
(ii) diam(ΓI1×I2(R1 ×R2)) = 2 if and only if R1 = ZI1(R1) or R2 = ZI2(R2)
(iii) diam(ΓI1×I2(R1 ×R2)) = 3 if and only if R1 6= ZI1(R1) and R2 6= ZI2(R2)

Proof. (i) Same as Theorem 3.6 (i).
(ii) (⇐) Without loss of generality, let R1 = ZI1(R1). Since R1 = ZI1(R1), by

Lemma 3.2, for all x1, x2 ∈ ZI1(R1), there exists x3 ∈ R1 − I1 such that
x3x1, x3x2 ∈ I1. So for all (x1, y1), (x2, y2) ∈ ZI1×I2(R1×R2)∗, there exists
(x3, 0) ∈ ZI1×I2(R1 ×R2)∗ such that (x1, y1)(x3, 0) ∈ I1 × I2.

If without loss of generality (x2, y2) = (x3, 0) then (x1, y1)(x2, y2) ∈ I1×
I2. Thus diam(ΓI1×I2(R1×R2)) ≤ 2 and by (i), diam(ΓI1×I2(R1×R2)) = 2.

(⇒) Same as Theorem 3.11 (ii).
(iii) By (i) and (ii).

�

Theorem 3.14. Let R1 and R2 be commutative rings with ideals I1 and I2, re-
spectively, such that diam(ΓI1(R1)) = 2 and diam(ΓI2(R2)) = 3. Then:

(i) diam(ΓI1×I2(R1 ×R2)) > 1.
(ii) diam(ΓI1×I2(R1 ×R2)) = 2 if and only if R1 = ZI1(R1).

(iii) diam(ΓI1×I2(R1 ×R2)) = 3 if and only if R1 6= ZI1(R1).

Proof. (i) Same as Theorem 3.6 (i).
(ii) (⇐) Same as Theorem 3.13 (ii).

(⇒) Let diam(ΓI1×I2(R1 × R2)) = 2. Assume that R1 6= ZI1(R1). Let
k ∈ regI1

(R1). Since diam(ΓI2(R2)) = 3, we know that we can find a
minimal path

y1 − y2 − y3 − y4

where d(y1, y4) = 3. Similarly, we know that that since ΓI1(R1) has diam-
eter 2, we can find x1 and x2 such that x1 is adjacent to x2. Then consider
the following path in ΓI1×I2(R1 ×R2):

(k, y1)− (0, y2)− (x1, y3)− (x2, y4)

Note that (k, y1) can’t be adjacent to (x2, y4) since k ∈ regI1
(R1). Then

there must exist some (a, b) such that (k, y1)(a, b) ∈ I1×I2 and (a, b)(x2, y4) ∈
I1 × I2. Note that this forces a ∈ I1. Then b can’t be in I2. But then
d(y1, y4) = 2, which is a contradiction.
Thus R1 = ZI1(R1).

(iii) By (i) and (ii).
�
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Theorem 3.15. Let R1 and R2 be commutative rings with ideals I1 and I2, re-
spectively, such that diam(ΓI1(R1)) = diam(ΓI2(R2)) = 3. Then diam(ΓI1×I2(R1×
R2)) = 3.

Proof. Since diam(ΓI1(R1)) = 3, there exist vertices x1, x2, x3, x4 ∈ ΓI1(R1) such
that there is a minimal path

x1 − x2 − x3 − x4

and d(x1, x4) = 3. Similarly, we can find vertices y1, y2, y3, y4 ∈ ΓI2(R2) such that
there is a minimal path

y1 − y2 − y3 − y4

and d(y1, y4) = 3.
Now consider the following path in ΓI1×I2(R1 ×R2);

(x1, y1)− (x2, y2)− (x3, y3)− (x4, y4)

Assume that d((x1, y1), (x4, y4)) < 3. Then there are two cases:
• (x1, y1) is adjacent to (x4, y4). But this would imply that x1 was adjacent

to x4 in ΓI1(R1), which would contradict the fact that d(x1, x4) = 3.
• (x1, y1) is adjacent to some (a, b) which is adjacent to (x4, y4). Assume

a ∈ I1. But then y1b ∈ I2 and by4 ∈ I2 which would imply that in ΓI2(R2),
we would have the path

y1 − b− y4

which contradicts d(y1, y4) = 3. We get a similar contradiction if b ∈ I2.
Thus d((x1, y1), (x4, y4)) ≥ 3. Since the diameter of a ideal-divisor graph is

always bounded by 3, we get that diam(ΓI1×I2(R1 ×R2)) = 3. �
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