ZERO-DIVISOR GRAPHS FOR DIRECT PRODUCTS OF
COMMUTATIVE RINGS

JOE WARFEL

Abstract. We recall several results of zero divisor graphs of commutative
rings. We then examine the preservation of the diameter of the zero divisor
graph of polynomial and power series rings.

1. Introduction

Istvan Beck ..rst introduced the concept of relating a commutative ring to a
graph in [4]. By the de..nition he gave, every element of the ring R was a vertex
in the graph, and two vertices x,y were connected if and only if zy = 0. Beck
was primarily interested in colourings of the graph; he conjectured that the
chromatic number of a ring - that is, the minimal number of colours necessary
to colour the ring’s graph such that no two adjacent elements have the same
colour - is equal to the size of the largest complete subgraph of the graph -
that is, the largest subgraph G such that for all vertices a, b in G, a is adjacent
to b. He also categorized all ..nite rings with chromatic number less than four.

In [2], D.D. Anderson and M. Naseer continued working with Beck’s de..nition.
They provided a counterexample to his conjecture, but proved several results
regarding the cases where the conjecture does hold. They also extended his
categorization of ..nite rings to those with chromatic number less than or equal
to four.

A dizerent method of associating a commutative ring to a graph was proposed
David F. Anderson and Philip S. Livingston in [1]. They believed that this
better illustrated the zero-divisor structure of the ring, and it is the de..nition
used in this paper; to wit:

De..nition 1.1. Zero-Divisor Graph of a Commutative Ring. Let R be a com-
mutative ring. Z(R) is the set of zero divisors of R, and Z*(R) = Z(R)\{0}.
The zero-divisor graph of R, I'(Z*(R)), usually written I'(R), is a graph in
which each element of Z*(R) is a vertex, and two vertices =z and y are con-
nected by an edge if and only if zy = 0.

Date: 2004.

1991 Mathematics Subject Classi..cation. 13A99.
1



ZERO-DIVISOR GRAPHS FOR DIRECT PRODUCTS OF COMMUTATIVE RINGS 2

Anderson and Livingston’s article contains several results that are important
for this paper. A graph is connected if a path exists between any two vertices
in the graph. The distance between two vertices a and b is the length of the
shortest path between them, declaring the length of each edge to be 1, and
is denoted d(a, b); the diameter of a graph G is sup{d(a,b) : a and b distinct
vertices of G}. Anderson and Livingston proved that if R is a commutative
ring, then I'(R) is connected and has diameter less than or equal to three.

In [5], S.B. Mulay takes up Anderson and Livingston’s de..nition of the zero-
divisor graph and uses it to investigate the cycle structure of T'(R). In [3],
M. Axtell, J. Coykendall, and J. Stickles examine the preservation of graph-
theoretic properties of the zero-divisor graph under extension to polynomial
and power series rings. This paper establishes a set of theorems that describe
the diameter of a zero-divisor graph for a direct product R; x R, with respect
to the diameters of the zero-divisor graphs of R, and R,, and also derives some
properties of the rings whose zero-divisors are realized as diameter-two graphs.

2. Direct Products

This section provides six theorems regarding the diameters of direct products
of commutative rings. The ..rst of these results relies heavily on a theorem
from [1] and a corollary thereof.

Theorem 2.1. (Anderson and Livingston Theorem 2.8) Let R be a commuta-
tive ring. Then I'(R) is complete if and only if either R = Zy x Zy or zy =0
for all z,y € Z(R).

Corollary 2.2. Let R be a commutative ring such that diam(I'(R)) = 1. Then
R? # 0 implies R # Z(R).

Proof. R? # 0 implies that R # Z(R) or that there exist =,y € Z(R) such
that xy # 0. If the ..rst condition is true, then the claim is proven; if the
second is true, then by Theorem 2.1 R = Z, x Z,, and hence R # Z(R). O

In the following, for R a commutative ring, let R* = {ab:a,b € R}. Also,
though it be an abuse of notation, let 0 = (0,0) as necessary.

Theorem 2.3. Diameter One by Diameter One

Let R; and R, be commutative rings such that diam(I'(R;)) = diam(T'(Ry)) =
1. Then:

i) diam(T'(Ry X Ry) =1 if and only if (R;)? = (Ry)? = 0.

i1) diam(T'(Ry; x Ry) = 2 if and only if without loss of generality (R;)* = 0
and (Ry)? # 0.

i11) diam(T'(Ry x Ry) = 3 if and only if (R;)* # 0 and (Ry)? # 0.



ZERO-DIVISOR GRAPHS FOR DIRECT PRODUCTS OF COMMUTATIVE RINGS 3

Proof. i) (<) Let (R))> = (Ry)? = 0. Letz € Ry, y € R,. By Theorem
2.1, it must be that z,z, = 0 for all z,,z, € R;. Likewise for all y;,y5 € R,.
Therefore, (l’l,yl)'(l'g,yg) = (l’ll’g,ylyg) =0 for all (l’l,yl), (l’g,yg) € R; x Ry,
so diam(I'(Ry X Ry)) = 1.

(=) Let (R;)? # 0. Then, for some 1,z € Ry, 172 # 0. However, this
means that (a:l,yl) . (l’g,yg) = (l’ll’g,ylyg) 7é 0 for some (l’l,yl),(l’g,yg) S
Ry X Ry, implying that diam(I'(R; x Rs)) > 1.

i1) (<) By (i), the fact that (R;)? # 0 implies that diam(T'(R; x Ry)) > 1.
However, since (R;)? = 0, there must exist z; € R, such that x;z, = 0 for all
x9 € R;. Then (z1,0) annihilates any element of Z*(R; x R,), and hence a
path of length two can be found between any two vertices of I'(R; x Ry) by
way of (z1,0). So, diam(I'(R; x Ry)) = 2.

(=) Let (R;1)? = (R)? = 0. Then by (i), diam(T'(R; x Ry)) = 1. So, let
(Ry1)? # 0 and (R2)? # 0, but assume diam(T'(R; x R)) = 2. By Corollary
2.2, since (R;)? # 0, there must exist m € R;\Z(R;); likewise, there must
exist n € Ry\Z(Ry). Letx € Z(Ry), y € Z(R3y). Consider the elements (m,y)
and (xz,n) of Z*(R; x Ry). Since (m,y) - (x,n) = (mx,ny) # 0, the distance
between the vertices is greater than one. Since diam(I'(R; X Ry)) = 2, there
must be some (a,b) € Z*(R; X Ry) such that (a,b) - (m,y) = (a,b) - (z,n) = 0.
Then am = ax = 0, so it must be that « = 0, and by = bn = 0, so b = 0.
Then (a,b) = (0,0), which is not an element of Z*(R; x R2). But this is a
contradiction. Therefore, it must be that either (R;)?> = 0 and (R5)* # 0 or
(R1)2 7é 0 and (R2)2 = 0.

i) By (i) and (47). O

Some of the following results make use of Lemma 3.1, proven in the next
section, which shows that if diam(I'(R)) = 2 and R = Z(R), then for all
e, f € R there exists a g € Z*(R) such that eg = fg = 0.

Theorem 2.4. Diameter One by Diameter Two

Let R, R, be commutative rings such that diam(T'(R;)) = 1, diam(T'(Rz)) =
2. Then:

i) diam(I'(Ry X Ry)) # 1.

'L'L) dzam(F(Rl X RQ)) =2 if and Only if R, = Z(Rl) or Ry = Z(Rg)

ii1) diam(I'(Ry X Ry)) = 3 if and only if Ry # Z(R;) and Ry # Z(R»).

Proof. i) Since diam(I'(Ry)) = 2, there must exist y;,y. € Z*(Ra), y1 # Yo,
with yiyp # 0. Let z € Z*(Ry). (z,y1) - (z,92) = (22, 1y2) # 0, therefore
diam(I'(R; x Ry)) > 1.

i1) (<) Let Ry = Z(R,). Let x; € Z*(R;). Then, by Corollary 2.2, (z,0)
annihilates any element of Z*(R; x R»), and hence diam(I'(R; x Ry)) < 2. By
(1), diam(T'(Ry X Ry)) > 1, so it must be that diam(I'(R; x Ry)) = 2. Now, let
Ry = Z(Ry). Assume (x,y;) and (x2, y2) are distinct elements of Z*(R; x R»)
and assume (x1,y1)(z2,y2) # (0,0). By Lemma 3.1 there exists y3 € Z*(Rx)
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such that y,y3 = yoy3 = 0. Observe that (0, ys) # (z1,y1) and (0, y3) # (22, y2)
else (z1,11)(z2,y2) = (0,0). Thus we have (z1,y1) — (0,y3) — (22,y2) and so
diam(T'(Ry X Ry)) < 2. By i), diam(T'(R; X Ry)) = 2.

(=) Assume that Ry # Z(R;,) and Ry # Z(R>) but diam(I'(Ry X Rz)) = 2.
Letzx € Z(Rl), Yy < Z(Rg), m € Rl\Z(Rl), n e RQ\Z(RQ) Since dzam(F(Rlx
Ry)) = 2, there must exist (a,b) € Z*(R; X Rs) such that (z,n)(a,b) =
(m,y)(a,b) = 0. Then za = ma =0, s0a =0, and nb = yb = 0, so b = 0.
Therefore (a,b) = (0,0), but since (0,0) ¢ Z*(R; x R,), this is a contradiction.

i) By (i) and (47). O

Theorem 2.5. Diameter One by Diameter Three

Let R;, R, be commutative rings such that diam(I'(R;)) = 1, diam(I'(Ry)) =
3. Then:

i) diam(I'(Ry; X Ry)) # 1.

i1) diam(I'(Ry; x Re)) =2 if and only if Ry = Z(R,).

ii1) diam(I'(Ry; X Ry)) = 3 if and only if Ry # Z(R;).

Proof. i) Since diam(I'(Ry)) = 3, there must exist y;,y, € Z*(Ra), Y1 # Yo,
such that 5, # 0. Let z € Z*(Ry). (z,y1) - (z,42) = (2%, y112) # 0, therefore
diam(I'(R; x Ry)) > 1.

i) («<) Let Ry = Z(Ry). Thus Ry, # Zy x Z, and so zyz, = 0 for
all x1,2z9 € Ry = Z(Ry) by Theorem 2.8 of Anderson/Livingston. Let
(l’l,yl),(l’g,yg) S Z*(Rl X RQ) and assume (l’l,yl)(l’g,yg) 7é (0,0) Thus
y1y2 # 0 and so y; # 0 and y, # 0. It is then clear that we have (zq,y;) —
(21,0) — (22, y2). Using i), diam(['(Ry x Rs)) = 2.

(=) Assume that R; # Z(R;) but diam(I'(R; X Ry)) = 2. Let x € Z*(R,),
y € Z*(Ry), m € Ri{\Z*(R,). Since diam(I'(R,)) = 3, there must exist distinct
Y1, Y2 € Z*(R2), y1 # Yo, y1y2 # 0, such that there does not exist y;3 € Z*(R,),
with y1y3 = yoy3 = 0. Consider (m,y;) and (m, y»). Assume that there exists
(a,b) such that (m, y1)-(a,b) = (m,ys2)-(a,b) = 0. Then a = 0 because ma = 0,
therefore we must have b € Z*(R,) such that y,b = y.b = 0. However, we have
already posited that no such b may exist, so this is a contradiction.

i) By (i) and (i7). O

Theorem 2.6. Diameter Two by Diameter Two

Let R;, R, be commutative rings such that diam(I'(R,)) = diam(T'(Rs)) =
2. Then:

i) diam(I'(Ry; X Ry)) # 1.

'l'l) dzam(F(Rl X Rg)) =2 if and Only if R1 = Z(Rl) or R2 = Z(RQ)

ii1) diam(I'(Ry X Ry)) = 3 if and only if Ry # Z(R;) and Ry # Z(R,).



ZERO-DIVISOR GRAPHS FOR DIRECT PRODUCTS OF COMMUTATIVE RINGS 5

Proof. i) Since diam(I'(R;)) = 2, there must exist x;,z, € Z*(Ry), z1 # o,
such that z,z5 # 0. Lety € Z*(Ry). (z1,y) - (72,y) = (z172,9*) # 0, therefore
diam(I'(R; x Ry)) > 1.

i1) (<) Without loss of generality let R, = Z(R;). Let z € Z*(Ry),
y € Z*(Ry). Since Ry = Z(Ry), by Lemma 3.1, for all x;,2, € Z(R),
there exists an x5 such that x3x; = xz3z, = 0. So, for any (x1,y1), (z2,92) €
Z*(Ry X Ry), there exists (z3,0) € Z*(R; X R») such that (z,y,)(z3,0) =
(2,92)(x3,0) = 0. If, without loss of generality, (z3,vy2) = (z3,0) then we
would have (z1,y1)(z2,y2) = 0. Thus, diam(I'(R; x Ry)) < 2. By (7), it must

(:>) Assume R, 7é Z(Rl), Rs 7é Z(RQ), but dzam(F(Rl X RQ)) = 2. Let
x € Z*(Ry), y € Z*(Ry), m € Ri{\Z(Ry), n € R2\Z(R3). Consider (z,n) and
(m,y). Since (z,n) - (m,y) = (mx,ny) # (0,0) and diam(I'(R; X Rs)) = 2,
there must be some (a,b) € Z*(R; x R») such that (a,b) - (z,n) = (a,b) -
(m,y) = (0,0). Then ma = nb = 0, so it must be that (a,b) = (0,0), but
(0,0) € Z*(Ry x Ry), a contradiction.

i) By (i) and (i7). O

Theorem 2.7. Diameter Two by Diameter Three

Let R;, R, be commutative rings such that diam(I'(R;)) = 2 and diam(I'(Ry)) =
3. Then:

i) diam(I'(Ry; X Ry)) # 1.

i1) diam(I'(Ry; x Re)) =2 if and only if Ry = Z(R,).

ii1) diam(I'(Ry; X Ry)) = 3 if and only if Ry # Z(R;).

Proof. i) Same as in proof of Theorem 2.6.

i1) («=) Same as in proof of Theorem 2.6.

(=) Assume R; # Z(R;) but diam(I'(R; x Rs)) = 2. Lety € Z(R»),
m € Ri\Z(R;). Since diam(I'(Ry)) = 3, there must exist y;,y, € Z*(R,),
Y1 7 Yo, Yy1y2 # 0 such that there is no y;3 € Z*(R,) with y1y3 = yy3 = 0.
Consider (m,y;) and (m,y2). Since (m,y1) - (m, y2) = (m?,y192) # (0,0) and
diam(I'(Ry x Rs)) = 2, there must exist some (a,b) € Z*(R; x Ry) such that
(a,b) - (m,y1) = (a,b) - (m,y2) = (0,0). Then ma = 0, so a = 0. Since
(a,b) € Z*(Ry X Ry), it must be that b € Z*(R,), but by, = by, = 0, and it
has already been posited that no such b exists. This is a contradiction.

iii) By (i) and (i7). O

Theorem 2.8. Diameter Three by Diameter Three
Let Ry, R, be commutative rings such that diam(I'(R;)) = diam(I'(Ry)) =
3. Then dzam(F(Rl X RQ)) = 3.
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Proof. Since diam(I'(R;)) = 3, there must exist z,z, € Z*(Ry), x1 # o,
x1x9 # 0, such that there is no z3 € Z*(R;) with x;x23 = zoz3 = 0. Likewise,
there must exist y;,y» € Z*(Ry) with y,5, # 0 such that there is no y; €
Z*(Ry) with 4193 = yoy3 = 0. Consider (x1,y;) and (z2,y2). Since (z1,y) -
(x2,Y2) = (172, 11Y2) # 0, diam (T (Ry x Ry)) > 1. Assume that diam(I'(R; x
Ry)) = 2; then there must exist some (a,b) € Z*(R; X Rs) such that (a,b) -
(x1,91) = (a,b) - (x2,y2) = 0. Then az; = axs = 0, S0 a = 0. Since (a,b) €
Z*(Ry X Ry), it must be that b € Z*(R,), but by, = by, = 0, and it has already
been posited that no such b exists. This is a contradiction, so it must be that
dzam(F(R1 X RQ)) = 3. U

If we restrict the rings R; and R, to be commutative rings with identity,
then the previous six theorems yield the following result.

Corollary 2.9. Let R, and R, be commutative rings with identity. Then
dzam(F(R1 X RQ)) = 3.

In a similar manner we consider a commutative ring R with identity has a
nontrivial idempotent, e. Due to the idempotent, we can decompose the ring
as R=eR x (1 —e)R and hence diam(I'(R)) = 3.

3. Diameter Two Rings

As part of the investigation of direct products, it was helpful to derive some
results regarding diameter-two rings similar to those provided by Anderson
and Livingston regarding diameter-one rings. The following lemma was cited
in the previous section.

Lemma 3.1. Let R be a commutative ring such that diam(I'(R)) = 2 and
Z(R) is a subring (not necessarily proper) of R. Then for all z,y € Z(R),
there exists a nonzero z such that zz = yz = 0.

Proof. Let z,y € Z(R). If x = 0, y = 0, or x = y then we are done since
diam(I'(R)) = 2 ensures the existence of the desired element 2. So, assume
x and y are distinct and nonzero. If zy # 0 then there exists z € Z*(R)
such that zz = yz = 0 since diam(I'(R)) = 2. Thus assume zy = 0. Consider
x+y. Clearly s +y #zand z+y #y. Ifz+y =0 then x = —y and
hence x> = 0. Thus z = z su®ces. So, we assume = +y # 0. Since Z(R) a
subring we have = +y € Z*(R). We also assume that 2 # 0 and 3 # 0 else
choose z = x or z = y respectively. Let X' = {2’ € Z*(R) : za’ = 0} and
Y' ={y € Z*(R):yy = 0}. Observe that z € Y’ and y € X’, hence X' and Y’
are nonempty. If X’NY” # () then choose z € X’NY’. Assume X'NY’ = () and
consider = + y. Since x? # 0 we see that = + y ¢ X’ and similarly x +vy ¢ Y.
Since diam(T'(R)) = 2 there exists w € X’ such that x — w — (z + y). Then
0=w(z+y)=wr+wy=wyand sow € Y’, a contradiction. O
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This excursus into diameter-two graphs leads to results that are interesting
in and of themselves, most of which currently relate to I'(R) being complete
bipartite, or nearly so. A graph G is complete bipartite if it can be partitioned
into two disjoint vertex sets P and @ such that two vertices p and ¢ are
connected by an edge if and only if they are in distinct vertex sets. The
following lemma makes use of the concept of a graph G having a complete
bipartite subgraph G’ induced by removing edges from G; to state the idea
with more rigor, such a subgraph exists if there exist two disjoint vertex sets
P and @ such that, if two vertices p and ¢ that are in distinct vertex sets, then
they are connected.

Lemma 3.2. Let I'(R) be the zero-divisor graph of some commutative ring R.
If I'(R) is not complete bipartite, but has a complete bipartite subgraph I''(R),
then Z(R) is a subring of R.

Proof. Let a,b € Z*(R). Clearly ab € Z(R) and —a € Z(R).Consider a + b.
Since it is possible to form a complete bipartite graph by removing edges from
I'(R), there must exist nonempty sets P and @ such that P U Q = Z(R),
PNn@Q=0,andpg=0forallpe P,qe Q. If a € Pand b € P, then let
q € Q. Thus, g(a+b) = ga+qb =0+0 =0, s0 a+b € Z(R). Likewise fora € @
and b € . So, without loss of generality, assume ¢ € P and b € (). Since
I'(R) is not complete bipartite, there must be an edge that does not connect
a vertex of P to a vertex of Q; let it lie between py,ps € P. pi(b+ po) =
p1b+ pip2 =0, s0 either b+py, =0, b+ps € Q,0rb+ps € P. If b+ py =0,
then 0 =00 = b(b + py) = b +bpy, = b, s0 b(a+b) =ba+b*=0+0= 0 and
hence a +b € Z(R). If b+ p, € Q, then 0 = a(b+ po) = ab + aps = ap,, SO
pa(a+0) =pa+pb=0+0=0andhence a+b € Z(R). If b+ p, € P then
for any ¢ € @ we have ¢(b+py) =0 and 0 = q(b + p2) = qb + qpo = qb. Thus,
gla+b) =qga+gb=0+0=0. O

Using the lemmas above, it is possible to prove a theorem that is nearly an
analogue of Anderson and Livingston Theorem 2.8 for diameter-two zero-
divisor graphs.

Theorem 3.3. Let R be a commutative ring. If I'(R) is not complete bipartite
but a complete bipartite subgraph can be formed by removing edges from I'( R),
then for all z,y € Z(R) there exists a z € Z(R) such that zz = yz = 0.

Proof. By Lemma 3.2, Z(R) is a subring of R. By Lemma 3.1, since Z(R) is a
ring with Z(R) = Z(Z(R)) and diam(T'(Z(R))) = diam(I'(R)) = 2, then for
all z,y € Z(R) there exists a z € Z(R) such that zz = yz = 0. O
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This theorem could be used to give a general description of all diameter-two
zero-divisor graphs if the following conjecture could be proven.

Conjecture 3.4. Let G be a connected graph with diameter two. If it is not
possible to form a complete bipartite graph G’ by removing edges from G, then
G # I'(R) for any commutative ring R.

4. Realizing G as I'(R)

A natural question regarding zero-divisor graphs is to ask which graphs can
be realized as I'(R) for some commutative ring R. Given a particular graph,
it is sometimes possible to prove that it cannot be realized as I'(R), as in the
following example, which incidentally lends some creedence to Conjecture 3.4.

Example 4.1.

Let G be a pentagon, and label its vertices consecutively a, b, ¢, d, e. Mulay and
(DeMeyer/Schneider) proved that if a zero-divisor graph has a cylce, it must
have girth of 3 or 4. Thus GG cannot be realized as I'(R) for some commutative
ring R. If we modify this example to include a path from e to b, then we can
show that the result is still never a zero-divisor graph of a ring. Consider a+c.
Since b(a 4+ ¢) = 0 and d(a + ¢) # 0, we have that a + ¢ € Z*(R). However,
it can easily be shown that a + ¢ cannot equal any of the ..ve non-zero zero
divisors. For example, if a +c¢ =10, the 0 =eb=e(a+ ¢) = ea + ec = 0 + ec,
but ec # 0.

By introducing the idea of a looped vertex, it is possible to give a few more
results regarding graphs that cannot be realized as I'(R). A vertex is looped if
it corresponds to an element z € R such that z? = 0, and is so called because
when the graph is drawn, there is an edge that forms a loop in order to connect
the looped vertex to itself.

Lemma 4.2. Let G be a connected graph with two adjacent looped points a
and b (that is, a*> = b* = 0). If diam(G) > 1 and there is no A € G such
that % is adjacent to both « and b, then G cannot be realized as I'(R) for any
commutative ring R.

Proof. Assume that G can be realized as I'(R) for some commutative ring R.
Since diam(G) > 1, there must be some vertex in G besides a and b connected
to either a or b (but not both, by the hypotheses of the theorem); let that
vertex be denoted c. Consider the element a + b. Trivially, a + b # a and
a+b # b Since c(a+0b) #0, a+b # 0. However, a(a + b) = 0 implies
a-+b € Z*(R), and thus there is a vertex in G corresponding to a + b. But
such a point would be adjacent to both « and b, a contradiction. O
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A star graph is a speci..c type of complete bipartite graph in which one of the
two disjoint vertex sets contains only one element. The lone element is called
the center of the star graph.

Lemma 4.3. Let G be a star graph with a non-looped center (that is, a center
that does not square to zero). If any vertex in G is looped, then G cannot be
realized as I'(R) for any commutative ring R.

Proof. Assume that GG can be realized as I'(R) for some commutative ring R,
and let the center of G' be denoted b. Assume that some point a € G, a # b,
is looped. Consider the element a +b. a(a +b) = 0,0 a+b € Z(R), but
bla+b) =b*+#0, s0 a+ b #0; therefore, it must be that a + b € Z*(R). A
contradiction since bz = 0 for all z € Z(R)\{b}. O

However, the results above only show cases in which G cannot be realized
as ['(R); it would be more useful to know in which cases G can be realized
as I'(R), and in such cases, what can be learned about R upon inspection
of G. The following result shows that all diameter-one graphs correspond
to a commutative ring, but not necessarily one with identity. It is easily
seen that every ..nite graph G of diameter 1 can be realized as I'( R) for some
commutative ring R by letting R = Z, with multiplication de..ned by zy = 0
forall z,y € Zy1.

However, if Conjecture 3.4 could be proven, it could be shown that every
diameter-two graph G is either complete bipartite (and hence can be realized
as I'(F, x Fy), F, and Fy ..nite ..elds), or that G can be realized as I'(R) for
some commutative ring R if and only if G can be realized as I'(R’) for some
R’ such that R" = Z(R'). This makes the problem much simpler, because if
R’ = Z(R) is ..nite, one needs only compare it to all of the rings of order
|R'| =|Z(R)| (a ..nite set) in order to determine whether GG can be realized as
['(R).

5. Conclusion

The investigation regarding diameters of direct products is essentially ..n-
ished; however, it acted as a motivation for asking seemingly unrelated ques-
tions, most of which remain unanswered, about what the structure of I'( R) tells
us about R. This paper approaches an understanding of diameter-two zero-
divisor graphs similar to what is already known about diameter-one graphs.
However, it does not touch on diameter-three graphs at all. Because of the
complexity of diameter-three graphs, studying the images of subrings and
ideals in T'(R), and the inverse images of subgraphs of I'(R) in R, might make
the problem easier. In [5], Mulay ozers a system for decomposing I'(R) into
subgraphs that is suggestive. Hopefully, it would eventually be possible to
determine whether GG can be realized as I'(R) for any G.
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Regarding the more general study of what I'(R) reveals about R, it may
be helpful to modify the de..nition of I'(R) so as to contain more informa-
tion about the nilpotency of the elements of R. The de..nition used in this
paper, which allows rings with distinct zero-divisor structures to be realized
as the same zero-divisor graph, is less useful than it could be in, for exam-
ple, attempting to create a classi..cation of commutative rings based on their
zero-divisor graphs. In Section 4 of this paper there is an attempt to include
more information by adding ’loops’ to some vertices; however, it may be more
representative of the structure of the zero-divisors to add more vertices to the
graph. Consider, for example, Z, x Z,, a diameter-one ring that is a fre-
guent exception to results about diameter-one rings and more often exhibits
diameter-two behaviour. If each element of Z*(Z, x Z,) were represented by
two vertices instead of one, then diam(I'(Z2 x Z5)) = 2; for any diameter-one
ring not congruent to Z, x Z,, this doubling of vertices would have leave the di-
ameter of I'(R) unchanged. Studying modi..cations of this sort may also yield
theorems that can be used to count things, which are typically very useful.
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