On Estimating Survival Function of Stochastic
Order*

Juan Gallegos, Daisy (Yan) Huang, Thien T. Nguyen, Gregory Schrage
July 30, 2004

Abstract

Let F , G, and H be survival functions satisfying the constraint F <
H < G . Lee, Yan, and Shi (1999) had developed an algorithm to estimate
the survival function H when F and G are known. However, lacking a
closed form of the estimator makes the investigations of the properties of
the estimator difficult. In this paper, we propose alternative estimators
for H in the case where F and G are known and in the case where they are
unknown. The estimators are proved to be strongly uniformly consistent
in both cases; the formulas for the bias and the mean squared error (MSE)
are also derived. In the simulations the MSE of our estimators, when F
and G are known, are uniformly better than that of Lee, Yan, and Shi
when the sample size is small(30); when the sample size is large, futher
investigation is needed.

I. Introduction

In 1955, Lehmann introduced the stochastic ordering concept, which had played
an important role in statistics. In particular, a related concept, stochastic or-
dering survival functions, had found applications in verious fields. We might
be interested in estimating a survival function of a certain electrical insulating
fluid subject to the level of voltage stress: the higher the voltage, the faster the
material fails (see Rojo (1995)), or in corrosion engineer, estimating the rate
of pit creation, which depends on the environments: the harsher they are, the
higher the rate (Shibata and Takeyama (1977)). In medical science, doctors find
it useful to know the survival times of patients who had heart pacemaker im-
planted. Since, it is “well documented” that females live longer than males, we
might want to estimate the survival times of these patients under this constraint
(see Dykstra (1982)).

*This project was partial sponsor by the NSF grant #... and NSA grant #...; we thank
Pro. Rojo, and Mr. Covarrubias for guidance and assistance.

Let F, G, and H be survival functions with corresponding cummulative distri-
bution functions, F, G, and H, respectively. Suppose these survival functions
are of the stochastic order F < H < G . The problems of estimating H when
there is a one sided constraint, i.e., when H < G or ¥ < H and F and G
are either known or unknown, were considered by various researchers. Dykstra
(1982) had found the nonparametric maximum likelihood estimator (NPMLE)
for the problem; however, the estimator came in the form of an algorithm and,
hence, rendered the difficulty of investigating the properties of the estimator.
In dealing with such hassle, Rojo (1995) and Rojo and Ma (1996) had come
up with closed-form estimators that converge weakly to the underlying survival
functions. It was shown that these estimators have a smaller positive bias and
mean squared error than the NPMLE. Their idea was to use the empirical sur-
vival functions and modify them where needed according to the constraint. It
is well known that the empirical survival function is an unbiased estimator that
converges strongly to the underlying survival function. We use the empirical
survival function as the estimator when it satisfies the constraint; otherwise,
we will use the boundary functions as the estimator. As the sample size in-
creases the estimator will converge to the true function; thus, the estimator will
essentially be the empirical survival function alone.

In 1999, Lee, Yan, and Shi had examined the one-sample problem with the
two-sided constraint, i.e., to estimate H satisfying F < H < G when F and G
are known. The NPMLE was, like Dykstra’s, an algorithm and thus inherited
the same drawbacks. Motivated by the work of Rojo (1995) and Rojo and Ma
(1999), we use the same idea to find the estimator for the function in question.

In particular, if F and G are known, let X, ..., X, be an independent ran-
dom sample from H, and let H, be the empirical survival function, define the

estimator H,(z) on R by:

(L1) Ho(z) = { Hale), if F(z) < Hola) < G(a);

We will show that H,, is strongly uniformly consistent and that it renders the
empirical survival function inadmissible. Also through simulations, the root
mean squared errors of the estimator defined in (1.1) were found to be smaller
than that of the NPMLE suggested by Lee, Yan, and Shi (1999).

In the case where F and G are unknown, let Yi,...,Y,, , X1,...,X, , and
Zy, ..., Z) be independent random samples from F', H, and G, respectively;
also let F,, , H, , and G}, be the empirical survival functions defined on the
random samples, respectively.

The asymptotic behavior of the functions defined by (1.2) and (1.3) was inves-

tigated by Rojo (1995); speciﬁcally,_?mk and G were proved to be strongly
uniformly consistent estimators of F' and G. Now, define the estimator for H
by:

N Fk(2), i Fn(2) < Fi(0);
(1.4) Hunk(2) = § Hu(z), if () < Hp(z) < G (@);
Gt (2), if Ho() > Gk (2).

The estimator defined above cannot be consistent if either m, n, or k stops

short of infinity; however, when they all go to infinity, H,,,, converges to the
underlying survival function.

I1. The Bias, the MSE, and the Consistency of H, on the One-Sample
Problem with Known Boundaries

For the two sided problem with the constraint, such that, F < H < G, satisfying
the conditions for our estimator (1.1) is equivalent to letting the estimator for
the c.d.f. H to be

N G(z), if Hn(z) < G(z);
(2.1) Hp(z) = ¢ Hn(z), if G(z) < Hn(z) < F(z);
F(z), if Ha(z) > F(z).

To calculate E(H,(z)) , note that given z, nH,(z) has Binomial (n, H(z))
distribution.

thus, R

P(Hn(z) = G(z)) = P(Hn(z) < G(z))
nHn(z) < nG(z))
n; [nG(z)]; H(z))

where [a] is the greatest integer that is smaller than or equal to a, and
B(n;a; H(z)) = P(z < a).

Similarly, we can obtain P(H,(z) = H,(z)) and P(H,(z) = F(z)).
Thus, the Bias of the estimator is:

(23) Bias(Ha()) = H(z) - B(H,())
= H(z) — {G(z)B(n; [nG(z)]; H(z))
L S e b i H(@)) + F(@) iy bns i+ H(x)) }
where f is the smallest integer that is greatest or equal to nF(z), and
b(n; i; H(z)) = P(x = i).

In a similar manner, we can find the MSE of the estimator as follows.

(24) MSE(H,(z)) = E (ﬁn(m) —F(x)f]
ﬂu—H@m—d—Hmﬂ?
[)

={[6@) - H@) Bn; nG(@)]; H@)) + & S15hae F — nH @) bns 5 H(z)
[F(2) - H@)]* Si blns i H(2)) |

Theorem 1. The function defined in (1.1) is strongly uniformly consistent
estimator of H .

PROOF: For all z € R,

(25) | Holx) — Alx) |<| Fale) — H(2) |< supyer | Faly) — Ay) |

The result follows from the Glivenko-Cantelli Lemma,
(see Chung (1974), p. 133).

ITI. The Bias, the MSE, and the Consistency of ﬁmnk on the Two-
Sample Problem with Unknown Boundaries

For the two sided problem in which F and G are unknown, the bias and the
MSE of our estimator (1.4) can be found as the following.

Let R
Gmr = min(F,,,Gy)
and R
Fo = max(Fp,, Gy)
Then, (1.4) is equivalent to letting the estimator of the c.d.f. H to be

~ Gt (2), i f H () < G (@);
(3.1) Hypni(z) = Hy(z),if Gml?(w) < Hy(z) < Fk(2);

~

where fImnk =1—Hpnk -
Let I4 be the indicator function for the set A. Then,
(3.2) Bias(Hpni(z)) = H(z) — E(Hpni(z))

where fImnk =1—Hpnk -
« _ | a—1;ifaisaninteger
Let [a]” = { [a] ; otherwise.

Then,

E (ﬁmk(m) I{Hn(z>>z?mk<w)})

= (E (ﬁmk(x) If 1. (a5 Foae)} | Fk(z) = c)>
-E (ﬁmk(m)p (Hn(m) > ﬁmk(m)) | Foi () = c)
- {[cP(Hn(x) > (P (ﬁmk(x) - c)}

=Y {LP (nHy(z) > [2

+ i {£P (nHa(2) > [F]) P (Gr(2) =) P (Fn(2) < §)}

32
o
5
s
|
L
~
Q
ol
0
IN
3
[——;

since F' and G are independent
=57 {4 (- B [2]5 H@) b0ms j; F@) B (k, [4] ,6@))]
+ i1 {3 (1= B [§]; H@)) b(k; §; G(2)) B (m; [3]; F(2)) }

(@) 115,)<t (0)<Fn (z)})
— 5 {B (M@ (5, e rcronco) | o) =c) }
= B (Ho(@)P (Gmi(2) < Hy(2) and Frup(w) > Hu(2)) | Ho(z) = c)
= ZLo{[4P (Gme(2) < 1) P (Fri > £)| P (Ha@) =)}
=Y o{[£ (1=P(Gi(z) > Land Fn(z) > 1)) (1 = P (Gi(z) < L and Frn(z) < £))] b(n; i; H(z))}
=Y {n - (1 =B(k [§]; G@)) (1 - B (m; [%]; F(2)))]
[1 -B (k; (17 G(ﬂf)) B (m; [24]7; F(m))} b(n; 4; H(w))}

E (émk(x) I{H (2)<Gm (ac)})

:E{E(@ ey, (2)<Er <w>}|G k(@) = C>}
=% {leP (Ha@) <)] P (Gt (2) =) }

= XL {EP (nHa(2) < [F]) P (Gr(2)

=i {38 (m (%] H@)) b is G()) (1- B (ms [
The M SE can be derived as the following.

MSEH os(2) = B | (Homs(s) - F0)) |
)

= 5{[(1- Buns®)) - - HO)] '}

—

=F ((H(ZL') - ﬁmk(x))z I{Hn(w)>1/‘"'\mk($)}>
+E ((H(w) — Hy())” I{amk(z)SHn(w)sfmk(w)})

=E ((H(m) — @mk(w))QI{Hn(zKamk(z)})

Since H(z) is a constant, for a given z, the MSE for ﬁmnk can be derived
by replacing
~ = 2 ~
Foo(z) with (H(w) —ka(m)) , H,(z) with (H(z) — Hp(z))?, and Gos
~ 2
with (H(m) — G (m))

~

in the derivation for the Bias(H mnk(z)).

Theorem 2. The function defined in (1.4) is strongly uniformly consistent
estimator of H.

PROOF: (1.4) can be written as

(3.3) Hynk () = Foi ()1 { +H ()] 7

Hn (w)<%mk(w)} ka(z)fﬁn (w)ngk(w)}

+§mk(x)]{ﬁn(z)>§mk(z)}

Assume that F < H < G. Then for an arbitrary z, let H(z)—F(z) =& > 0.

Since H, converges to H asn — oo ,%mk converges to F asm and k — oo
(Rojo (1995)), then 3 M, N, and K such that m > M, n > N, and k > K,
= |Hy(z)— H(z) |< %, and | Frux(z) — F(z) |< £.

Thus, when m > M, n > N, and k > K,

mk(®) — Hp(z) + H(z) — F(2) = Fpp(z) — F(z) + H(z) — Hp(2)

!

IN

Fk(z) = F(z) |+ | Ho(z) — H(z) [< 5 + § =¢.

Hence, H,,(z) — Fmi(z) > 0.

As a result, {Hn(x) < ka(x)} becomes empty, as n, m and k — 0.

Similarly, {Fn(x) > amk(m)} becomes empty, as n, m and k — oo.

Therefore, 1 ~
{Fa@<Fio)

}—>0,and1{ }—)O,asn,

H,(z) >8mk (z)

m and k — oo.
Thus, Huny — H, almost everywhere, as n, m, and k — oo . The proof
is complete, for H, — H with probability one, as n — oo .

If there exists an z such that H(z) = F(z) or H(x) = G(zx) then(we
provide the proof if we figure it out later!)

IV. Simulation Studies

In order to analyze the differences between our proposed estimator and the
NPMLE offered by Lee, Yan, and Shi (1991), we ran simulations for these two
estimators. The simulations are run for two purposes.

The first reason for us to run the simulations is to compare the simulation
results for the NPMLE with the data reported by Lee, Yan, and Shi (1999).
These results are important because they can either confirm or deny Lee, Yan,
and Shi’s findings, and the comparison between our estimator and Lee, Yan,
and Shi’s makes sense only if their data is accurate. If the simulations show
that there is an error in the published data, we will use our simulation results
for the NPMLE do the comparison.

The main purpose of the simulations is to find out which of Lee, Yan, and Shi’s
and our estimators is better. The v MSE, which measures the accuracy of
an estimator, is being used. By running simulations we are able to estimate
the VM SE for the NPMLE and compare them with those published by Lee,
Yan, and Shi (1999). The vVMSE is used in place of MSE because it was
the quantity used in Lee, Yan, and Shi’s paper to measure the accuracy of the
NPMLE. Also, since both estimators are good and return the MSE’s in the
magnitude of the ten thousandths, the use of the v/ M SE avoids cluttering the
data with unnecessary zeros.

In Lee, Yan, and Shi’s paper , there are four cases of simulations run and the
VMSE’s were presented. Due to time constraints, we are able to analyze only
two cases.

For the first case, we have:

H(t) = exp(—t) with stochastic bounds

F(t) = exp(—t/0.8), no upper bound.

One-Sided Problem:

For the one-sided simulations, the group worked with the case above. We
ran 10,000 simulations with a sample size of 100 and found that the reported
results were not only accurate but higher than the results from the simulations.
After running 10,000 simulations on our estimator for the one-sided problem,
we found that from quantiles zero through .25 (with step of .05) our estima-
tor had a smaller MSE than the NPMLE. From quantiles .25 through .8 the
NPMLE had a smaller MSE and from .8 through 1 the two estimators were
almost identical. These results were somewhat surprising because Rojo and
Ma (1996) had concluded otherwise. Therefore, we ran both simulators 20,000
times, 10,000 simulations each for a sample size of 20 and 10,000 simulations
each for a sample size of 30. As expected, we found that the proposed esti-
mator had a smaller MSE than the NPMLE uniformly. In the case of sample
size of 20, the greatest difference in the vV MSE is .015684286 and on average
the proposed estimator has a smaller v MSE by .013327239. In the case of
sample size of 30, the greatest difference in vV M SE is .00864384 and on average
the proposed estimator has a smaller v M SE by .0073919. But in the case of
sample size of 100, the greatest difference in vV MSE is .002010813, with the
NPMLE being smaller. On average, for this case, the NPMLE has a smaller
VMSE by .00075748. The MSE of this greatest difference is 4.04 «* 10~% and
the M SE of the average is 5.74 % 10~7. These numbers are so small that for all
practical purposes, the proposed estimator is just as accurate as the NPMLE.
In conclusion, for the one-sided problem the proposed estimator is as accurate
as the NPMLE for large sample sizes and more accurate for small sample sizes.

Two-Sided Problem:

In the following table, we list the vV MSE’s that were calculated theoretically
for our estimator, along with the vV M SE’s for the NPMLE. Due to times con-
straint, we just run the simulation, using Lee, Yan, and Shi’s algorithm, to
estimate H(z) = exp(—z), given F(z) = exp(—2/0.8) and G(z) = exp(—x/1.2)
with sample size of 30, and the size of the simulation is 4550 times. The results
are given in table below where the differences are the discrepancies between
VMSE’s of the estimator defined in (1.1) and the NPMLE.

Size 30

t.10 t.20 t.30 t.40 t.50 t.60 t.70 t.80 t.90

Est. (Theo.) | .0249 | .0423 | .0554 | .0648 | .0703 | .0716 | .0689 | .0616 | .0455

NPMLE .0506 | .0640 | .0777 | .0857 | .0927 | .0944 | .0936 | .0853 | .0704

Differences | -.0257 | -.0217 | -.0223 | -.0209 | -.0224 | -.0228 | -.0247 | -.0237 | -.0249

Proposed vs. NPMLE, Sample size = 30

n
\—!_
o
o
\—!_
© 0O 0—0—0—0_4
o o}
w 0 Q
0 o
o]
o]
o 0
o o]
o
¢}

Q|
o

T T T T

0.2 0.4 0.6 08

Probabilities

The result shows that the estimator defines in (1.1) is uniformly better than
the NPMLE in this case; however, we suspect that for a large sample size,
our estimator converges to the empirical survival function, and thus might not
preserve this property. Further investigation is needed to determine whether it
is true.

V. Appendix
(a) One-Sided Problem Code:

10

Lee, Yan, and Shi’s Algorithm:

HR<- function(sample)

{
MSE<-NULL
EMSE<-NULL
sumtotall<-numeric(19)
sumsqtotall<-numeric(19)
sumtotal2<-numeric(19)
sumsqtotal2<-numeric(19)
for(w in 1:1000)

{

vector<-rexp (sample)
S<-sort(vector)

al<-NULL

for(i in 1:length(vector))

{
}

a<-sort(al)

b<-a[length(a):1]

c<-(length(a):1)

d<-c((length(c)-1):1,0)

e<-c(1,b[1: (length(b)-1)1)

f<-cbind(c,e,d,b) #up to here we are just ordering data

x<-dim(f) [1]

B<- matrix(,x,x) #gives us the yab matrix

for (i in 1:x)
for(j in 1:x)
{B[i,j1<-(£[i,11*£[j,41-£[j,31*£[i,2]1)/(f[i,21-f[j,41)}

totalystar<-NULL

ystar<-NULL

for (number in 1:nrow(B))

{

for(i in 1:number)

{

all[il<- 1-(1-exp(-vector[i]*1.25))

AVECTOR<-B[i,number:ncol(B)]
theMax<-AVECTOR[1]
for(i in 1:length(AVECTOR))

{

if (theMax<=AVECTOR[i])

{

theMax<-AVECTOR[i]

11

}
}
ystar[i]<-theMax

}

#gives us the vector of all ystars
totalystar [number]<-min(ystar)

combo<- 1-(1/(c+totalystar))

constants<-c(0.05129329,0.10536052,0.16251893,0.22314355,
0.28768207,0.35667494,0.43078292,0.51082562,0.59783700,
0.69314718,0.79850770,0.91629073,1.04982212,1.20397280,
1.38629436,1.60943791,1.89711998,2.30258509,2.99573227)

theIndex<-NULL

for(k in 1:length(constants))

{
for(i in 1:length(S))
{
if (constants[k]>=S[i])
{theIndex[k]<-(i)}
}
thelndex
}

estimator<- NULL
for(i in 1:length(theIndex))

{
if (theIndex[i]=="NA’)
{estimator[i]<-1}
else
{estimator[i]<-prod(combo[1:theIndex[i]])}
}

empirical<-NULL
counter<-numeric(19)

for (j in 1:length(constants))
for (i in 1:length(S))

if (S[i]<=constants[j]){counter[jl<-counter[j]+1}
}
p<-seq(.05,.95,.05)
empirical<-counter/sample
Fx<- 1-estimator
sumtotall<-sumtotall+Fx
sumsqtotali<-sumsqtotalil+(Fx) "2
sumtotal2<-sumtotal2+empirical
sumsqtotal2<-sumsqtotal2+(empirical) "2

12

MSE<-(sumsqtotall/1000) - (2xp* (sumtotall/1000))+(p~2)
EMSE<- (sumsqtotal2/1000) - (2*p* (sumtotal2/1000))+(p~2)
list (EMSE,MSE)

Our Simulation Code:

Our2sample<-function(sample)
{

sumtotal<-numeric(19)

sumsqtotal<-numeric(19)

for(w in 1:1000)

{

a<-rexp(sample)

a<-sort(a)#gives random numbers in small to big

xps<- c(.05129329,.10536052,.16251893, .22314355, .28768207, . 35667494,
.43078292, .51082562, .59783700, .69314718, .79850770, .91629073,
1.04982212,1.20397280,1.38629436,1.60943791,1.89711998,
2.30258509,2.99573227)

gxp<-NULL

for(i in 1:length(xps))

{
}

empirical<-NULL
counter<-numeric(19)
for(j in 1:length(xps))

for(i in 1:length(a))

{
}

empirical<-(1-(counter/sample))
S<-numeric(19)
for(i in 1:length(qxp))

{
}

p<-seq(.05,.95,.05)
sumtotal<-sumtotal+S
sumsqtotal<-sumsqtotal+(S~2)

qxpl[il<- exp(-xps[i]/.8)

if (alil<=xps[j]) {counter[j]l<-counter[jl+1}

S[i]l<-max(empiricall[i],qxp[i])

MSE<-(sumsqtotal/1000)-(2*(1-p)* (sumtotal/1000))+((1-p)"2)
MSE

(b) Two-Sided Problem Code:

13

Lee, Yan, and Shi’s Algorithm:

Enter the sample size here
sampleSize <- 100

Enter how many run through here
numSimulation <- 10

MSE <- NULL
EMSE <- NULL
sumtotall <- 0
sumtotal2 <- 0
sumsqtotall <- 0
sumsqtotal2 <- 0
for(i in 1:numSimulation) {
###4H4HHH#S#EH Generate data and initialize ######44#4#
theQ <- NULL
theR <- NULL
theQr <- NULL
theRr <- NULL
theVector <- rexp(sampleSize)
theVector <- sort(theVector)
for(i in 1:sampleSize) {
theQ[i] <- 1 - (1 - exp(- theVector[i] * 1.25))
}

for(i in 1:sampleSize) {
theRr[i] <- theR[i] <-
1 - (1 - exp(- theVector[i] * (1/1.2)))
}
HHHHHHHHHHFH##E Step 2r + 1 #HHHHHHHHHHHHHHEHRRHRRHHES
partLength <- 0
thePartition <- c(0, sampleSize)
totalystar <- numeric(sampleSize)
while(partLength != length(thePartition)) {
#update partlLength
partlength <- length(thePartition)
for(index in 1:(length(thePartition) - 1)) {
alphal <- thePartition[index]
alpha2 <- thePartition[index + 1]
for(i in (alphal + 1):alpha2) {
theQr[i] <- max(theQ[i], theR[alpha2])
}

C <- c(length(theQr):1)

theQr <- sort(theQr)
theQr <- theQr[length(theQr):1]

14

d <- c(1, theQr[1l:length(theQr) - 11)
gst <- matrix(NULL, length(theQr), length(theQr))
#CALCULATE Y[s,t]
for(s in 1:length(theQr))
for(t in s:length(theQr)) {
theFunc <- function(y)

{
}

gstls, t] <- uniroot(theFunc, c(((d[s]/(d[s] - theQr[t]) -

}

sum(log(1l - (1/(Cls:t] + y)))) - log(theQr[t]/d[s])

gst <- t(gst)
#Now is the part where we solve the min max thing with
#caveat of yi=max(yi,0) when alpha2=m
theMax <- NULL
ystar <- NULL
for(i in (alphal + 1):alpha2) {
for(j in (alphal + 1):i) {
theMax[j] <-
max(gst[i:alpha2, j], na.rm = TRUE)
}
totalystar[i] <- min(theMax, na.rm = TRUE)
reset ystar when alpha2 = m
if (alpha2 == sampleSize) {
totalystar[i] <- max(totalystar[i], 0)
}
}

Add partition points
for(i in 1:(length(totalystar) - 1)) {
if (totalystar[i] > totalystar[i + 1]) {
thePartition <- c(thePartition, i)
}
}

thePartition <- sort(thePartition)
aVector <- c(thePartition[length(thePartition)])
for(i in 1:(length(thePartition) - 1)) {
if (thePartition[i] !'= thePartition[i + 1])
aVector <- c(aVector, thePartition[i])

}

thePartition <- sort(aVector)
}
#itHHHH AR SR AR AR HHHRFHERE Step 2r + 2 #H##HHHEEEEEEEEEEEEEEE
for(index in 1:(length(thePartition) - 1)) {

alphal <- thePartition[index]

alpha2 <- thePartition[index + 1]

for(i in (alphal + 1):alpha2) {

15

theRr[i] <- min(theR[i], theQr[alphall)
}
C <- c(length(theRr):1)
theRr <- sort(theRr)
theRr <- theRr[length(theRr):1]
d <- c(1, theRr[1:length(theRr) - 1])
gst2 <- matrix(NULL, length(theRr), length(theRr))
for(s in 1:length(theRr))

for(t in s:length(theRr)) {

theFuncl <- function(y)

{
sum(log(1l - (1/(Cls:t]l + y)))) -
log(theRr[t]/d[s])

}

gst2[s, t] <- uniroot(theFuncl,

c(((dls]/(dls]
- theRr[t]) - C[tl))
- 0.0001, 1000000))$root
}
gst2 <- t(gst2)
#Now is the part where we solve the min max thing with
#caveat of yi=max(yi,0) when alpha2=m
theMin <- NULL
ystar <- NULL
for(i in (alphal + 1):alpha2) {
for(j in (alphal + 1):i) {
theMin[j] <-
min(gst2[i:alpha2, j], na.rm = TRUE)
}
totalystar[i] <- max(theMin, na.rm
reset ystar when alpha2 =m
if (alpha2 == sampleSize) {
totalystar[i] <- min(totalystar[i], 0)
}
}

for(i in 1:(sampleSize - 1)) {
if (totalystar[i] > totalystar[i + 1]1) {
thePartition <- c(thePartition, i)
}
}

thePartition <- sort(thePartition)
aVector <- c(thePartition[length(thePartition)])
for(i in 1:(length(thePartition) - 1)) {
if (thePartition[i] != thePartition[i + 1])
aVector <- c(aVector, thePartition[i])

TRUE)

16

thePartition <- sort(aVector)
}
#return values
totalystar
}
c <- sampleSize:1
combo <- 1 - (1/(c + totalystar))
constants <- ¢(0.05129329, 0.10536052, 0.16251893, 0.22314355,
0.28768207, 0.35667494, 0.43078292, 0.51082562,
0.597837, 0.69314718, 0.7985077,0.91629073,
1.04982212, 1.2039728, 1.38629436, 1.60943791,
1.89711998, 2.30258509, 2.99573227)
thelndex <- NULL
for(k in 1:length(constants)) {
for(i in 1:sampleSize) {
if (constants[k] >= theVector[il) {
theIndex[k] <- (i)
}
}

theIndex
}
estimator <- NULL
for(i in 1:length(theIndex)) {
if (theIndex[i] == "NA") {
estimator[i] <- 1
}

else {
}

}

empirical <- NULL

counter <- numeric(19)

for(j in 1:length(constants))
for(i in 1:sampleSize) {

if (theVector[i] <= comstants[j]) {
counter[j] <- counter[j] + 1
}
}

p <- seq(0.05, 0.95, 0.05)

empirical <- counter/sampleSize

Fx <- 1 - estimator

sumtotall <- sumtotall + Fx

sumsqtotall <- sumsqtotall + (Fx)~2
sumtotal2 <- sumtotal2 + empirical
sumsqtotal2 <- sumsqtotal2 + (empirical) 2

estimator[i] <- prod(combo[1l:theIndex[i]])

17

MSE <- (sumsqtotall/numSimulation)

- (2 * p * (sumtotall/numSimulation)) + (p~2)
EMSE <- (sumsqtotal2/numSimulation)

- (2 * p * (sumtotal2/numSimulation)) + (p~2)
list (MSE, EMSE)

Our Codes to Calculate the Proposed MSE Theoretically:

#Bias & MSE for Case3 B1
#Sample size=100

p<-seq(0.05,.95,.05)

p

length(p)

t<- -log(1l-p)

t

fcdf<-pexp(t,1/.8)

fcdf

nfcdf<-100*fcdf

nfcdf

A<-c(1:100)

A
n<-numeric(length(nfcdf))
for (i in 1:length(nfcdf))

{
n[i]=100-length(which(A>=nfcdf[i]))
}

n

gcdf<-pexp(t,1/1.2)

gedf

mgcdf<-100*gcdf

mgcdf

m<-numeric(length(mgcdf))
for (j in 1:length(mgcdf))

{

m[jl=length(which (A<=mgcdf[j]))

}

m
EVHhat<-numeric(length(p))
for (i in 1:length(p))

{

18

S<-seq(m[il+1, (n[il),1)

partialsum<-sum(S*dbinom(S,100,p[i]))

EVHhat [i]=fcdf[i]*(1-pbinom(n[i],100,p[i]))
+1/100*partialsum+gcdf [i]
xpbinom(m[i],100,p[i])

}

EVHhat

Bias=p-EVHhat

Bias
MSE<-numeric(length(p))
for (i in 1:length(p))

{
Sprime<-seq(m[il+1, (n[i]),1)
partialsum<-sum(((Sprime-100*p[i])~2)

*dbinom(Sprime, 100,p[il))

MSE[il=((fcdf[i]-p[i]) ~2)*(1-pbinom(n[i],100,p[i]))
+((1/100) ~2) *partialsum+((gcdf [i]-p[i])~2)
*pbinom(m[i],100,p[il)

}

MSE

SQRofMSE<-sqrt (MSE)

SQRofMSE

References

[1] Chung, K. L. (1974). A Course in Probability Theory. Academic Press, San
Diego.

[2] Dykstra, R. L. (1982). "Maximum likelihood estimation of the survival func-
tions of two stochastically ordered random variables”, J. Amer. Stat. Assoc.,
77, 621-628.

[3] Lee, C. C., Yan, X. and Shi, N. (1999). ”Nonparametric estimation of
bounded survival functions with censored observations”, Lifetime Data Anal-
ysis, 5, 81-90.

[4] Lehmann, E. L. (1955). ”Ordered families of distributions”, Ann. Math.
Statist., 26, 399-419.

[5] Rojo, J. (1995). ”On the weak convergence of certain estimators of stochas-
tically ordered survival functions”, J. Nonparam. Stat., Vol 4, No 4, 349-363.

[6] Rojo, J. and Ma, Z. (1996). ”On the estimation of stochastically ordered
survival functions”, J. Statist. Comput. Simulation, 55, 1-21.

19

[7] Shibata, T. and Takeyama, T. (1977). “Stochastic Theory of Pitting Corro-
sion”. Corrosion, 33, No. 7, 243.

20

