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Throughout, R will be a commutative ring with identity with total quo-
tient ring T (R), group of units U(R), set of zero-divisors Z(R), and Jacobson
radical J(R). For a; b 2 R, we de…ne three associate relations:

1. We say a and b are associate, denoted a » b, if ajb and bja, (a) = (b).

2. We say a and b are strongly associate, denoted a ¼ b, if there exists a
u 2 U (R) such that a = ub.

3. We say a and b are very strongly associate, denoted a »= b, if a » b and
either a = 0 or a = rb) r 2 U (R).

De…nition 1 A ring R is called présimpli…able if xy = x for x, y 2 R
implies that either x = 0 or y 2 U(R).

We have the following theorem:

Theorem 2 For a commutative ring R the following are equivalent:

1. a » b) a »= b for all a; b 2 R,

2. a ¼ b) a »= b for all a; b 2 R,

3. R is présimpli…able, and

4. Z(R) µ J(R):
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Proof. (1) ) (2). Clear
(2) ) (3). Suppose xy = x and x 6= 0. Since x = 1 ¢ x, we have x ¼ x.

From (2) we get x »= x, and hence y 2 U(R).
(3) ) (4). Let x 2 Z(R) with xy = 0 and y 6= 0. It su¢ces to show

1 ¡ xz 2 U (R) for all z 2 R. So, xy = 0 ) ¡xzy = 0 ) ¡xzy + y = y )
y(1 ¡ xz) = y ) 1 ¡ xz 2 U(R) by (3).

(4) ) (3). Let xy = x and x 6= 0. Thus, x(1¡y) = 0 ) 1¡y 2 Z(R) µ
J(R). So, 1 ¡ (1 ¡ y) = y 2 U(R).

(3) ) (1). Suppose a » b. Then, a = xb and b = ya. So, a = xya )
xy 2 U(R) ) x 2 U(R).

It is easy to check that Zn is présimpli…able if and only if n = pm where
p is some prime.

De…nition 3 A ring R is an associate ring if a » b ) a ¼ b. A ring R
is a superassociate ring if every subring of R is an associate ring.

If R is présimpli…able, R is an associate ring, since a » b ) a = rb
and b = sa ) a = rsa ) a = 0 or rs 2 U(R) ) r 2 U(R). The
converse is false, since a direct product of associate rings is associate (see
below), but a présimpli…able ring has no nontrivial idempotents and hence
is indecomposable. Also, any integral domain or any quasi-local ring is
présimpli…able and hence an associate ring. We see a quasi-local ring is
présimpli…able by the following:

Let R be a quasi-local ring with maximal ideal M and suppose xy = x.
Then, x (1 ¡ y) = 0 2 M ) x 2 M or 1 ¡ y 2 M . If x =2 M , then
x 2 U(R) ) 1 ¡ y = 0 ) y 2 U(R). If x 2 M , then either 1 ¡ y 2 M )
y 2 U (R), or 1 ¡ y 2 U (R) ) x = 0.

Note that if a 2 R is regular, then a » b ) a »= b ) a ¼ b, since
a = rsa) a(1 ¡ rs) = 0 ) 1 ¡ rs = 0 ) r 2 U (R).

Theorem 4 Let fR®g be a nonempty family of commutative rings. Then,Q
R® is an associate ring , each R® is an associate ring.

Proof. Let a = (a®) ; b = (b®) 2 Q
R®. Then, a » b, each a® » b® and

a ¼ b, each a® ¼ b®. The result follows.
Thus, any PIR is an associate ring, since a PIR decomposes into domains

and SPIR’s, and SPIR’s are associate since they are local. Also, any zero-
dimensional Noetherian ring is associate, since zero-dimensional Noetherian
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implies Artinian and is thus isomorphic to a …nite direct product of Artinian
local rings.

However, the class of associate rings is not closed under homomorphic
images, subrings, or subdirect products.

Example 5 For any ring R, R[x; y; z]=(x¡xyz) is not an associate ring. To
see this, …rst note that ¹x » ¹x¹y in R[x; y; z]=(x¡xyz). Now suppose ¹f ¹x = ¹x¹y.
for f 2 R[x; y; z]. We must show that ¹f can’t be a unit. Now, ¹f ¹x¡¹x¹y = ¹0, so
fx¡fy 2 (x¡xyz). Therefore fx¡fy = xh(1¡yz) for some h 2 R[x; y; z].
Then x(f ¡ y ¡ h(1 ¡ yz)) = 0, which implies f ¡ y ¡ h(1 ¡ yz) = 0, so
f = y + h(1 ¡ yz). If f is a unit, then (f; x) = R[x; y; z]. But, if y = z
and x = 0 we get (z+ h(1¡ z2)) = R[z], which is false. Therefore, ¹f cannot
be a unit, so R[x; y; z]=(x ¡ xyz) is not associate. Thus any ring R can be
embedded in a nonassociate ring.

Note that if K is a …eld, then the integral domain K [x; y; z] is an asso-
ciate ring (in fact, it is superassociate), while K [x; y; z] = (x¡ xyz) is not
an associate ring. Thus, homomorphic images of associate rings are not
necessarily associate. We see that x » xy, since clearly (xy) ½ (x), and
(x) ½ (xy) since x = xyz. Also, since a unit of K [x; y; z] = (x¡ xyz) is
some f such that fg ¡ 1 2 (x¡ xyz) for some g 2 K [x; y; z], we have
fg ¡ 1 = h 2 (x¡ xyz) ) fg ¡ h = 1. So, x 6¼ xy since z is not a unit (no
constant term).

Note that since (x¡ xyz) = (x) (1 ¡ yz) = (x)\(1 ¡ yz),K [x; y; z] = (x¡ xyz)
is a subdirect product of the two integral domains K [x; y; z] = (x) »= K [y; z]
and K [x; y; z] = (1 ¡ yz) »= K [x; y; y¡1], since

K [x; y; z] = (x¡ xyz) ¼1¡! K [x; y; z] = (x¡ xyz)
Á

(x¡ xyz) = (x)
»= K [x; y; z] = (x)

K [x; y; z] = (x¡ xyz) ¼2¡! K [x; y; z] = (x¡ xyz)
Á

(x¡ xyz) = (1 ¡ yz)
»= K [x; y; z] = (1 ¡ yz)

So, we see the class of associate rings is not closed under subdirect prod-
ucts and hence not closed under subrings.
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Actually, any reduced ring is a subdirect product of associate rings R ,!Q fR=P j P is a minimal prime of Rg. Thus, if R is reduced with a …nite
number of minimal primes, R is a …nite subdirect product of associate rings.
Also, for any R, R ,! Q

M2Max(R)RM . So, every ring is a subring of a direct
product of associate rings. On the other hand, K ½ K [x; y; z] = (x¡ xyz),
where K is associate, and K [x; y; z] = (x¡ xyz) is not associate.

Using Theorem 4 it is easy to see that Zn is associate for every n 2 N.

Lemma 6 If a and b are both idempotents in a ring R, then a » b) a ¼ b.

Proof. Let M be a maximal ideal of R. Then, a1 and b
1 are idempotents

in RM with RMa = RM b. Now since RM is quasi-local, RM has no nontrivial
idempotents. Hence, since RMa = RM b and a

1 ;
b
1 are idempotent, we have

a
1 = 0

1 = b
1 or a1 = 1

1 = b
1 . Thus, a¡b1 = 0 in every RM . Hence, a¡ b = 0 )

a = b.
Recall that R is a von Neumann regular ring if every element is von

Neumann regular, i.e. for each a 2 R, there exists an x 2 R such that
axa = a. Thus, a von Neumann regular ring is présimpli…able if and only if
it is a …eld.

Lemma 7 If R is von Neumann regular and a 2 R, then there exist u 2
U(R) and an idempotent e 2 R such that a = ue.

Proof. Let a 2 R. Then there exists an x 2 R such that a = axa.
Then (ax)2 = axax = (axa)x = ax, and ax is idempotent. Thus, a =
ax [a+ (1 ¡ ax)] = e [a+ (1 ¡ e)].

We claim a+ (1 ¡ e) is a unit. It su¢ces to show a+ (1 ¡ e) is a unit for
any localization. Since any localization of a von Neumann regular ring is a
…eld, we need only show a+ (1 ¡ e) is nonzero in every localization.

Case 1 : a1 = 0
1 ) e

1 = 0
1 since e = ax) a+(1¡e)

1 = 1
1

Case 2 : a1 6= 0
1 ) e

1 6= 0
1 since (e) = (a) ) RM = RMa = RMe ) e

1 =
1
1 ) 1¡e

1 = 0
1 ) a+(1¡e)

1 = a
1 6= 0

1 :
So, a + (1 ¡ e) is locally and hence globally a unit, and a = eu, where

e = ax is an idempotent and u = a+ (1 ¡ e) is a unit.

Theorem 8 A von Neumann regular ring R is associate.

Proof. Let a; b 2 R with a » b. By Lemma 7 we can write a = u1e1
and b = u2e2 where u1; u2 2 U(R) and e1; e2 2 R are idempotent. Then,
e1 » a » b » e2 ) e1 = e2. By Lemma 6, we get a ¼ b.
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De…nition 9 R is domainlike if Z (R) µ nil (R), the nilradical of R.

Lemma 10 (0) is primary , R is domainlike.

Proof. ()) Let (0) be primary. Then, if ab = 0 and a 6= 0, bn = 0 for
some n. Let b 2 Z (R). Then there exists an a 2 R ¡ f0g such that ab = 0.
Hence, bn = 0, and b 2 nil (R).

(() Let R be domainlike. Suppose ab = 0 and a 6= 0. Then, b 2 Z (R) µ
nil (R), which implies bn = 0 for some n. Hence, (0) is primary.

Fact: If R is domainlike, then R is présimpli…able, since nil (R) µ J (R)
(see Theorem 2).

Example 11 The converse of the previous statement is false. Let R =
K [[x; y]] = (x) (x; y). Then, R is local since K [[x; y]] is local, and the homo-
morphic image of a local ring is local. Hence, R is présimpli…able. However,
R is not domainlike since Z (R) = (x; y) while nil (R) = (x).

Note: We have previously shown that
R quasi-local ) R is présimpli…able ) R is associate, and that
R domainlike ) R is présimpli…able ) R is associate.
However there is no strong implication between domainlike and quasi-

local. Example 11 shows that a quasilocal (in fact, local) ring need not
be domainlike, hence a quasilocal ring need not be domainlike. Further
Z is domainlike, présimpli…able, and associate, but not quasi-local. It is
also of interest to note that a domainlike ring can be neither Noetherian
nor quasilocal. For example, R = Z[2X; 2X2; 2X3; ::::] is domainlike (a
subring of Z[X]) and R is not Noetherian (Hutchins) since the ideal P =
(2X; 2X2; 2X3; :::) cannot be …nitely generated. Further, from Hutchins we
have that (2; 2X; 2X2; 2X3; :::) is maximal. Then, since (3; 2X; 2X2; 2X3; :::) Ã
(2; 2X; 2X2; 2X3; :::) we get that (3; 2X; 2X2; 2X3; :::) is also maximal in R -
thus R is domainlike, not quasilocal, and not Noetherian.

Remark 12 Any subring of a domainlike ring is again domainlike, but a
subring of a présimpli…able ring need not be présimpli…able. So, R domainlike
implies that R is superassociate. The converse is false [Principal Ideals and
Associate Rings, Remark 3]. Indeed, R is présimpli…able if and only if R [[x]]
is présimpli…able (DDAI, pg. 471), but R [x] is présimpli…able if and only if
(0) is primary (which implies that R is présimpli…able) [DDAI, p. 472].
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Proof. ()) Let a; b 2 R such that a » b in R. Thus, a » b in R [x] and
a »= b in R [x]. Then, a ¢ f = b, where f 2 U (R [x]). Thus, f must have a
constant coe¢cient c 2 U (R). It follows that ac = b, and a »= b in R.

(() Z (R [x]) = ff j 9r 2 R with rf = 0g. Let f = a0+a1x+ ¢ ¢ ¢ anxn 2
Z (R [x]). Then, rai = 0 for all i. So, since r 6= 0, there is an ni so that
anii = 0 for all i. So, each ai is nilpotent, which implies f is nilpotent, and
f 2 nil (R [x]). Since, nil (R [x]) = J (R [x]), we have f 2 J (R [x]).

This also gives

Lemma 13 R [x] is présimpli…able , R [x] is domainlike , R is domainlike:
(See Remark 32 ).

Note that Zm [x] is présimpli…able i¤ m = pn, since Zm is domainlike i¤
m = pn. Now, since a domainlike ring is présimpli…able, a domainlike ring
is associate. Thus, any domainlike ring is superassociate. Since an integral
domain is superassociate, Example 5 shows that the homomorphic image of
a subdirect product or direct product of superassociate rings need not be
associate, let alone superassociate.

Also, note that every subring of Z £ Z or Z2 £ Z2 is an associate ring,
but Z £ Z and Z2 £ Z2 are not domainlike.

Proposition 14 If R is domainlike, so is T (R).

Proof. Assume R is domainlike. We will show (0) is primary in T (R).
Assume r1s1 ¢ r2s2 = 0

1 and r1
s1

6= 0
1 . So, there exists an s 2 reg (R) such that

s (r1r2 ¡ 0) = 0. Thus, r1r2 = 0. If r1 6= 0, then rn2 = 0 for some n, since (0)
is primary in R. Hence,

³
r2
s2

´n
= 0

1 , and so (0) is primary in T (R).

De…nition 15 Let R be a commutative ring with identity and letM be an R-
module. The idealization ofM in R, denoted R (M), is the set f(r;m) j r 2 R;m 2Mg
with (r1;m1)+(r2;m2) = (r1 + r2;m1 +m2) and (r1;m1)¢(r2;m2) = (r1r2; r1m2 + r2m1).

Example 16 R présimpli…able ; R [x] is associate. For such an example,
consider R = Z(2)(Z4) (Ex. 6.1 on page 472 of DDAI).

Therefore, R associate does not imply that R [x] is associate, but R [x]
associate does imply that R is associate (if a » b in R then a » b in R [x].
Thus, au = b where u = a0 + a1x + a2x2 + ¢ ¢ ¢ anxn with a0 2 U (R) - thus
u 2 U (R [x]). This will imply that aa0 = b.)
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De…nition 17 Let M be an R-module. Let m1;m2 2 M . De…ne m1 »
m2 , Rm1 = Rm2; m1 ¼ m2 , m2 = um1 for some u 2 U (R); m1

»=
m2 , m1 » m2 and m1 = rm2 implies r 2 U (R). Call M an associate R-
module if m1 » m2 ) m1 ¼ m2 and call M a présimpli…able R-module
if m1 » m2 ) m1

»= m2.

Note: An R-module M is associate (présimpli…able) if and only if each
cyclic R-module is associate (présimpli…able). Therefore, a submodule of
an associate (présimpli…able) module is associate (présimpli…able) since a
submodule is the union of the cyclic R-modules generated by its constituent
elements. In other words, for a module, associate implies superassociate.

Proposition 18 If R (M) is associate, then R is associate and M is an
associate R-module.

Proof. Suppose R is not associate. Then, there are r1; r2 2 R such that
r1 » r2, but r1 6¼ r2. So, (r1; 0) » (r2; 0), but (r1; 0) 6¼ (r2; 0), since any unit
of R (M) is of the form (u;m) where u 2 U (R), a contradiction.

Suppose M is not an associate R-module. Then, there are m1;m2 2 M
such that Rm1 = Rm2, but there is not a u 2 U (R) so that m1 = um2. So,
clearly (0;m1) » (0;m2) and if (0;m1) ¼ (0;m2), then there exists (u;m)
with u 2 U (R) such that (0;m1) = (0;m2) (u;m) ) (0;m1) = (0; um2), a
contradiction.

Theorem 19 Let R be présimpli…able and M be an R-module.

1. R (M) is associate if and only if M is associate,

2. R (M) is présimpli…able if and only if M is présimpli…able.

Proof. (2) In DDAII, p. 209, prop 3.1
(1) ()) Ifm1 » m2 inM , then (0;m1) » (0;m2) in R (M). So, (0;m2) =

(u;n) (0;m1), where (u; n) 2 U (R (M)). Hence, u 2 U (R), and m1 ¼ m2.
So, M is associate.

(() If (0;m1) » (0;m2) in R (M), thenm1 » m2 inM , and so m2 = um1

for some u 2 U (R). So, (0;m2) = (u; 0) (0;m1), and (0;m2) ¼ (0;m1). Now,
suppose (a;m1) » (b;m2) where a 6= 0 (which implies b 6= 0). Then,
(a;m1) = (c; n) (b;m2) implies a = cb. Hence, since R is présimpli…able and
(a) = (b), c 2 U (R). This implies (c; n) 2 U (R (M)), and (a;m1) ¼ (a;m2).
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Proposition 20 A cyclic abelian group A (as a Z-module) is associate if and
only if A »= Z, or A »= Zn for n = 1; 2; 3; 4; 6. However, if A is présimpli…able,
then A »= Z;Z2;Z3; or f0g.

Proof. The second statement is obvious. Also, it is easy to check that Z
and Zn are associate for n = 1; 2; 3; 4; 6. Conversely, assume A is associate.
Clearly, Z is associate. Let A = Zn, where Zn is associate. If 1 · l · n¡ 1,
with (l; n) = 1, then l » 1 (since ls + tn = 1 ) l ¢ s = 1 mod n). Hence,
l = §1 mod n, since U (Z) = §1. So, either l = 1 or l = n ¡ 1. Hence,
Á (n) = 1 or Á (n) = 2. So, n = 2; 3; 4

Example 21 An associate ring need not be expressible as a direct product
of présimpli…able rings. For example, Z(Z4) is associate by Theorem 19
and Proposition 20. However, Z(Z4) has no nontrivial idempotents ( (0,0)
and (1,0) are the only idempotents). Therefore Z(Z4) cannot be written as
a direct product of présimpli…able rings. Note that a présimpli…able ring
has no nontrivial idempotents and is hence indecomposable, but this example
shows that the converse is false - Z(Z4) is an indecomposable associate ring
that is not présimpli…able.

Corollary 22 As a Z-module, an abelian group G is associate if and only if
G = F © T , where F is torsion-free and T is torsion with 3T = 0; 4T = 0,
or 6T = 0.

Proof. (() By hypothesis, each element of G has order 1; 2; 3; 4; or 6,
so the result follows.

()) The torsion part T is of bounded order, so G = F ©T . Each element
of in…nite order is isomorphic to Z. If a 2 T has …nite order, 4a = 0, 3a = 0,
or 6a = 0. So, Za is associate.

Remark 23 Suppose p is prime. Then every ideal of R = Z©Zp is generated
by two elements.

Proof. Suppose 0 6= I ( R is an ideal of R. If (0; a) 2 I where a 6= 0,
then (0; 1) 2 I. Thus, I= (0; 1) is principal. So, assume no (0; a) 2 I where
a 6= 0. Now, some (n; 0) 2 I , since (m; a) 2 I ) (pm; pa) = (pm; 0) 2 I.
Choose n1 to be the least positive integer with (n1; 0) 2 I. Then, (n; 0) 2 I )
(n; 0) 2 h(n1; 0)i. If I = h(n1; 0)i, we are done. So, assume some (n; a) 2 I
with n 6= 0, a 6= 0. Then, some (m; 1) 2 I as before. Let n2 be the least
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positive integer such that (n2; 1) 2 I. We claim that I = h(n1; 0) ; (n2; 1)i. If
(n; 1) 2 I, then (n2; 1) ¡ (n; 1) = (n2 ¡ n; 0) 2 h(n1; 0)i. If 2 · a · p ¡ 1,
(n; a) ¡ a (n2; 1) = (n¡ an2; 0) 2 h(n1; 0)i. So, (n; a) 2 h(n1; 0) ; (n2; 1)i.

Example 24 R = Z(Z5) is not associate (as a Z-module), but every ideal of
R is generated by 2 elements. So, even though a PIR is associate, if every
ideal of R is generated by two elements then R need not be associate.

De…nition 25 An R-module, M , preserves Z(R) if rm = 0 in M where
m 6= 0 and r 6= 0 implies that r 2 Z (R).

Theorem 26 R(M) is domainlike , R is domainlike and M preserves
Z(R).

Proof. ()) Assume that R(M) is domainlike, so ((0; 0)) is primary in
R(M). Let ab = 0 in R and let a 6= 0. Thus (a; 0)(b; 0) = (0; 0) in R(M)
and (a; 0) 6= (0; 0). Since R(M) is domainlike, we have that (b; o)n = (0; 0)
for some n. So, (bn; 0) = (0; 0) ) bn = 0 in R. Thus (0) is primary in R
and hence R is domainlike. Now, assume that for some m 6= 0 in M and
some r 6= 0 in R we have that rm = 0 in M . Therefore (r; 0) (0;m) = (0; 0)
in R(M) and (0;m) 6= (0; 0). R(M) domainlike implies that (r; 0)n = (0; 0)
for some n. So rn = 0 in R and hence r 2 Z (R).

(() Let (a; l) (b;m) = (ab; am+ bl) = (0; 0) in R(M) and (a; l) 6= (0; 0).
If a 6= 0 in R, then R domainlike implies that bn = 0 in R for some n. Thus
(b;m)2n = (b;m)n (b;m)n = (0; k) (0; k) = (0; 0). If a = 0 in R, then l 6= 0
in M and bl = 0 in M . So b 2 Z (R) by hypothesis. Thus b is nilpotent
since R is domainlike, so bn = 0 in R for some n. Thus, (b;m)2n = (0; 0) as
before. So R(M) is domainlike.

Remark 27 It was shown in Theorem 26 that R(M) domainlike ) R is
domainlike. The converse is shown to be false by the following example.

Example 28 Let R = Z and consider Z(Z2). Clearly Z is domainlike,
but Z(Z2) is not domainlike since (0; 1) (2; 1) = (0; 0) and (0; 1) 6= (0; 0) yet
(2; 1) is not nilpotent - hence the zero ideal is not primary in Z(Z2).

Lemma 29 Let R be Noetherian. Then R is domainlike if and only if R [[x]]
is domainlike.
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Proof. (() Suppose ab = 0 in R. Then, ab = 0 in R [[x]], and an = 0
for some n.

()) Let f =
P
aixi 2 Z (R [[x]]). Since R is Noetherian, there exists an

r 2 R such that rf = 0. Hence, rai = 0 for all i. Since R is domainlike and
ai 2 Z (R), we have ai 2 nil (R) for all i, and again since R is Noetherian,
f 2 nil (R [[x]]).

Example 30 Although R[[y]] domainlike implies that R is domainlike, the
converse is not true in general. Consider the following:

R = Z [x1; x2; :::] =
¡
x1; x22; x

3
3; :::; x

n
n; :::; x2x3; x2x4; :::; x2xk; :::

¢

Then, R is domainlike, but R [[y]] is not domainlike. To see this, let f 2 R,
if f has no constant term it will be nilpotent. If f has a constant term,
it cannot be a zero-divisor. Hence, Z (R) µ nil (R), and R is domainlike.
However, let g = x3 + x4y + x5y2 + x6y3 + ¢ ¢ ¢ 2 R [[y]]. Then, x2g = 0,
but g is not nilpotent. Hence, Z (R [[y]]) * nil (R [[y]]), and R [[y]] is not
domainlike.

Theorem 31 Any localization of a domainlike ring is domainlike.

Proof. Let R be domainlike and S be a multiplicatively closed set in R.
If S contains a zero divisor r, then r is nilpotent (since Z (R) µ nil (R)) and
S contains 0. Thus, RS = f0g, which is trivially domainlike. So, suppose S
contains no zero-divisors and assume a

s1
¢ bs2 = 0

1 with a
s1

6= 0
1 . Then, there

exists a t 2 S such that t (ab¡ s1s2 ¢ 0) = 0. Since t is a regular element
of R, we get ab = 0. Since a

s1
6= 0

1 , a 6= 0, and bn = 0 since (0) is primary.

Hence,
³
b
s2

´n
= 0

1 , and (0)S is primary. Thus, RS is domainlike.

Remark 32 From Theorem 1-3 of Bouvier’s paper “Présimpli…able Rings”
of 1974 we get the following connections: R[x1; x2; :::; xn] is présimpli…able
, R[x1; x2; :::; xn] domainlike , R is domainlike since Bouvier’s de…nition
of domainlike is primary. Bouvier also mentions in Theorem 3 that if R is
Artinian, then R is présimpli…able , R is local. However a zero-dimensional
ring need not be présimpli…able.

Example 33 R zero-dimensional and R not présimpli…able. Let R =
Z3 [x] = (x2 ¡ 1). From Hutchin’s example book (example 137), R is 0-dimensional,
Noetherian, and non-local. However, U (R) = f1;¡1; x;¡xg so consider
(x+ 1) (¡x¡ 1) = x+1 and x+1 is not a unit. So R is not présimpli…able.
It is straightforward to show that R is associate.
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Remark 34 1. R présimpli…able 6) R is superassociate. Any ring can
be written as a subring of a direct product of présimpli…able rings -
such as RM where M is a maximal ideal. If R présimpli…able ) R is
superassociate, then RM would be superassociate and hence

Q
RM is

superassociate which would imply that R is associate for every R.

2. This is false: R quasi-local 6) R is superassociate. To see this, let R0

be a quasi-local ring, let F1 be the quotient …eld of Z[Y ], and let F2 be
the quotient …eld of Z[X ]. Then R = R0©F1 ©F2 ©F2 is a quasi-local
ring, with subring 0© Z[Y ]© Z[X ]© Z[X] »= Z[Y ]© Z[X ]© Z[X ]. By
[Remark 2, Principal Ideals and Associate Rings], Z[Y ]© Z[X]© Z[X]
is not superassociate, and therefore R is not superassociate.

3. R superassociate 6) R présimpli…able, R is domainlike, or that R is
quasi-local. For example, consider the ring Z £ Z. To see that
Z £ Z is superassociate, let A be a subring of Z £ Z, and suppose
(a1; b1); (a2; b2) 2 A such that (a1; b1) s (a2; b2). Then, there exist
(c1; d1); (c2; d2) 2 A such that (a1; b1)(c1; d1) = (a2; b2) and (a2; b2)(c2; d2) =
(a1; b1). Then a2c1c2 = a2 and b2d1d2 = b2. If a1, b1 6= 0, then
c1c2 = 1 and d1d2 = 1. Clearly, if (c1; d1) = (1; 1) or (¡1;¡1),
then (c1; d1) 2 U(A). If (c1; d1) = (1;¡1), (c1; d1)2 = (1; 1) so
(c1; d1) 2 U (A). Therefore A is associate. WLOG, if a1 = 0, then
choose c1 = c2 = 1. Since b2 6= 0, we have that d1 and d2 are ei-
ther 1 or -1. Therefore, in either case, (c1; d1); (c2; d2) 2 U(A), and
A is associate. However, a direct product of présimpli…able rings is
never présimpli…able and a direct product of domainlike rings is never
domainlike.

4. Being superassociate is not preserved by direct products or subdirect
products. (Remark 2, Principal Ideals and Associate Rings).

Theorem 35 R domainlike ) R=
p
0 is an integral domain (and therefore

an associate ring).

Proof. R domainlike ) (0) is primary. Let ab 2
p
0 and a 62

p
0 )

an 6= 0 for every n, but ambm = 0 and am 6= 0 so (bm)l = 0 ) b 2
p
0 )

p
0

is prime. Thus R=
p
0 is an integral domain.
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Example 36 The converse is false. As before (Example 11) , take R =
K [[x; y]] = (x) (x; y). R is not domainlike, but

p
0 = (¹x) which is prime.

(Note that
p
0 is prime, but (0) is not primary since R is not domainlike).

Remark 37 R=
p
0 is domainlike , R=

p
0 is an integral domain ,

p
0 is

prime.

Theorem 38 R=
p
0 is présimpli…able ,

¡
xy = x and x =2

p
0 ) y 2 U (R)

¢
.

Proof. ()) Suppose xy = x and x =2
p
0. Therefore ¹x¹y = ¹x and

¹x 6= ¹0 ) ¹y 2 U
¡
R=

p
0
¢

) y 2 U (R).
(() Suppose ¹x¹y = ¹x and ¹x 6= ¹0. So x =2

p
0. Then,

xy ¡ x 2
p
0 ) [x (1 ¡ y)]n = 0

) xn (1 ¡ y)n = 0

) xn
Ã
1 ¡ y ¢

nX

i=0

(¡1)i
¡ n
i+1

¢
yi

!
= 0

) xn = xny ¢
nX

i=0

(¡1)i
¡ n
i+1

¢
yi

Since x =2
p
0, xn 6= 0, and so

y ¢
nX

i=0

(¡1)i
¡ n
i+1

¢
yi 2 U (R)

Hence, y 2 U (R), and ¹y 2 U
¡
R=

p
0
¢
.

Thus, R présimpli…able implies that R=
p
0 is présimpli…able and hence

associate.

Example 39 R=
p
0 présimpli…able ; R présimpli…able. To see this, con-

sider R = Z (Z8). R is not a présimpli…able ring by Theorem 19 and
Proposition 20. Then, nil (Z (Z8)) = f(0; a) j a 2 Z8g. Using Theorem
38, suppose that (a; b) (y1; y2) = (a; b) and (a; b) =2 nil (Z (Z8)) - i.e. a 6= 0.
Thus (ay1; ay1 + by2) = (a; b) ) ay1 = a ) y1 = 1 ) (y1; y2) 2 U (Z (Z8)).
Thus R=

p
0 is présimpli…able by Theorem 38. So, R=

p
0 présimpli…able

12



does not imply that R is présimpli…able. Further, R=
p
0 présimpli…able does

not imply that R is associate, since Z (Z8) is not associate by Theorem 19
and Proposition 20. In addition, it is interesting to note that R associate
; R=

p
0 is présimpli…able. For example, R = Z3 £ Z3 is associate and

(1; 0) (1; 0) = (1; 0) where (1; 0)n 6= (0; 0) and (1; 0) =2 U (Z3 £ Z3).

Theorem 40 R présimpli…able and (0) not primary ) dim(R) ¸ 1.

Proof. Since (0) is not primary, there exists x; y 2 R such that xy = 0
where y 6= 0 and xn 6= 0 for all n. Hence, x 2 Z (R) µ J (R), and x is
contained in every maximal ideal of R.

Now, S = fxng1n=1 is a multiplicatively closed set and x =2
p
0, we have

(0) is an ideal disjoint from S. Expand (0) to a prime ideal P disjoint from
S. Then, x =2 P , and hence P is not maximal. Thus, we have P ( M for
some maximal ideal M of R, and dim(R) ¸ 1.

Lemma 41 For any ideal Q,
p
Q maximal ) Q is primary.

Proof. Let Q be an ideal of R and suppose
p
Q = M , where M is a

maximal ideal of R. Let ab 2 Q and suppose a 62 p
Q. Then, to show Q

is primary, we must show that b 2 Q. Since a 62 p
Q = M , (M;a) = R,

so 1 2 (M;a). Then 1 = m + ra with m 2 M and r 2 R. Since m 2 M ,
mn 2 Q for some n 2 N¤. Now, 1 = (m + ra)n = mn + ta where t 2 R, so
b = 1b = (mn + ta)b 2 Q since mn; ab 2 Q.

Remark 42 If R=
p
0 is a …eld, then

p
0 is maximal, so (0) is primary by

Lemma 41. Hence, R is domainlike. But, Z is domainlike and Z=
p
0 is not

a …eld.

The next example shows that R=
p
0 associate need not imply that R is

associate.

Example 43 By Example 39, R=
p
0 is présimpli…able where R = Z (Z8)

and hence R=
p
0 is associate. However, Z (Z8) is not associate.

Remark 44 Recall that a ring R is primary if it has a unique prime ideal.
By Proposition 7, p. 35, in ”Lectures on Rings and Modules”, R is primary
if and only if R is domainlike and all nonunits are zero divisors.

13



Theorem 45 R présimpli…able and dim(R) = 0 , R primary.

Proof. ()) Since dim(R) = 0, all prime ideals are maximal. Since R
is présimpli…able and dim(R) = 0, we must have

p
0 prime (by Theorem

40) and hence maximal. Since
p
0 is maximal and is the intersection of all

prime ideals of R, we have that
p
0 is the only prime ideal in R. Hence R is

primary.
(() If R is primary, then dim(R) = 0 by de…nition, and since R is

domainlike, R is présimpli…able.

Remark 46 If a ring R is présimpli…able and dim(R) = 0, then R is pri-
mary and therefore domainlike (Remark 44) .

Remark 47 Recall that a special principal ideal ring (SPIR) is a PIR with
a unique prime ideal. Thus an SPIR is local and thus présimpli…able, and
so associate.

Theorem 48 If R is a ring with only …nitely many distinct principal ideals,
then R is associate.

Proof. If R is a ring with only …nitely many distinct principal ideals,
then R can be written as a …nite direct product of SPIR’s and …nite local
rings (Axtell’s paper, Lemma 3.4 - probably elsewhere also). Then an SPIR
is associate and so are local rings, so by Theorem 4, we get that R is associate.

Let us recall some of the basic de…nitions involved in the construction of
ultraproducts. Let I be a non-empty and let P (I) = fA j A µ Ig. D is a
…lter on I if D µ P (I) and

(a) Á =2 D and D 6= Á,
(b) A;B 2 D implies A \ B 2 D, and
(c) A 2 D and A µ B implies B 2 D.

A …lter D on I is an ultra…lter i¤ for every A µ I either A 2 D or
I nA 2 D - and not both by (a) and (b). Now, let fR®g®2I be a collection of
commutative rings with 1. Let F be an ultra…lter on I . The ultraproduct
of the R®’s modulo F ,

Q
R®=F , is de…ned as

Q
R®= » where (ai) » (bi)

if fi 2 I j ai = big 2 F . We recall the Los’ Property applied to …rst-order
sentences, which essentially states that an ultraproduct of R®’s modulo F
will have a given property, A, i¤ f® 2 I j R® has property Ag 2 F .
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Theorem 49 (Los’ Property) If F is an ultra…lter on I and U =
Q
Ui=F an

ultraproduct, then for any …rst-order sentence ¾, U j= ¾ i¤ fi 2 I j Ui j= ¾g 2
F .

Theorem 50 Let fR®g®2I be a collection of commutative rings with 1. Let
F be an ultra…lter on I. Then

Q
R®=F is associate (présimpli…able) ,

f® 2 I j R® is associate (présimpli…able)g 2 F .

Proof. The property of a ring R being associate can be expressed in
terms of the …rst-order sentence
¾assoc = 8x8y9z9w9u9v9k8l[((xz = y) ^ (yw = x)) )
((kl = l) ^ (uv = k) ^ (xu = y))]. Thus the Los’ Property gives the de-

sired result. For présimpli…able, use ¾pr¶e = 8x8y9w9v8z[(xy = x) )
(((x = w) ^ (wz = w)) _ ((yu = v) ^ (vz = z)))].

Corollary 51 An ultraproduct of associate ( présimpli…able) rings is asso-
ciate (présimpli…able).

Proof. For any ultra…lter F on any set I, I 2 F .

Remark 52 The properties of being domainlike and superassociate are not
expressible as …rst-order sentences, hence Los’ Property may not be applied
to these characterizations.

Theorem 53 Let I be an indexing set. For each i 2 I let Ri be a ring from
the set fR1; R2; :::; Rmg. Let F be any ultra…lter over I. If Ri is domainlike
for every i 2 I then

Q
Ri=F is domainlike.

Proof. Suppose (ai) (bi) = (0) in
Q
Ri=F . So, fi j aibi = 0g 2 F . If

(ai) 6= (0) then fi j ai = 0g =2 F ) fi j ai 6= 0g 2 F since F is an ultra…lter.
Now, aibi = 0 and ai 6= 0 ) 9ni 2 N such that bnii = 0 in Ri since Ri is
domainlike. Therefore fi j ai 6= 0g ½ fi j bnii = 0 for some nig 2 F . Let
n = max fnigmi=1 then (bi)

n = 0 since
fi j bnii = 0 for some nig ½ fi j bni = 0 g 2 F .

The converse to the above theorem is not necessarily true.
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Example 54 Let I = f1; 2g with ultra…lter F = ff1g ; f1; 2gg and let R1 =
Z4 and R2 = Z6. Observe that

Q
Ri=F is domainlike since the nonzero zero

divisors of
Q
Ri=F are of the form (a; b) where 0 6= a 2 Z (R1), yet any such

(a; b) is nilpotent since R1 is domainlike, and yet R2 is not domainlike.

It is also interesting to note note an arbitrary ultraproduct of domainlike
rings need not be domainlike.

Example 55 Let Ri = Z [x] = (xi) for i 2 I = f2; 3; 4; 5; :::g. Ri is do-

mainlike since Z (Ri) = fxp (x) + (xi)g ½ nil (Ri). Let F be any ultra-
…lter over I containing only sets of in…nite cardinality, for instance F =
ffn; n+ 1; n+ 2; :::g j n ¸ 2g . Now, (x; x; x; :::) (x; x2; x3; :::) = (0) and
(x; x2; x3; :::) 6= (0). However, 8n 2 N, (x; x; x; :::)n = (xn; xn; xn; :::) 6= (0)
by the construction of our ultra…lter. Thus,

Q
Ri=F is not domainlike.

Recall that a …lter, D, on I is called principal if for some A µ I, D =
fB j A µ B µ Ig. We call A the generator of the …lter. If A = fig for
some i 2 I, then we call i the base element of the principal …lter. It is
straightforward to verify that if the set I is …nite, then any ultra…lter, F , on
I is principal and has a base element.

Theorem 56 Let I be an indexing set. Let F be any principal ultra…lter
on I with a base element. For every i 2 I, let Ri be some commutative ring
with unity.

Q
Ri=F is superassociate , Rj is superassociate where j is the

base element of the ultra…lter F .

Proof. WLOG let j = 1 be the base element of our ultra…lter F .
()) Suppose that R1 is not superassociate and has non-associate subring

S1. Consider the subring of
Q
Ri=F given byA = f(a) 2 Q

Ri=F j the R1-component is from S
Since this is a subring of the direct product

Q
Ri it’s image is also a sub-

ring of the ultraproduct
Q
Ri=F . Thus A is associate by hypothesis. Let

a » b in S1 such that 8u 2 U (R1), au 6= b. Now, (a; 1; 1; :::) » (b; 1; 1; :::)
in A, and A associate implies that there exists a unit, (u) of A such that
(a; 1; 1; :::) (u) = (b; 1; 1; :::). Then (u) 2 U (A) ) 9 (v) 2 U (A) such that
(u) (v) = (1) = (1; 1; :::) in A. Therefore C = fi j uivi = 1Rig 2 F . If 1 =2 C
then f1g\C = ; 2 F . This is obviously a contradiction. Thus, any unit of
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A contains a unit of S1 in its …rst component. So, (a; 1; 1; :::) » (b; 1; 1; :::)
in A and A associate implies 9u1 2 U (S1) µ U (R1) such that au1 = b.
Contradiction. Thus R1 is superassociate.

(() Assume R1 is superassociate. Suppose that
Q
Ri=F is not superas-

sociate. Let S be a non-associate subgroup of
Q
Ri=F and let (a) ; (b) 2 S

which are associate and not separated by a unit of S. Let
S1 = fa1 2 R1 j a1 is the …rst component of some element of Sg. Since 1 is
the base element of our ultra…lter, we see that S1 is a subring of R1 and
is hence associate. Again, since 1 is the base element of our ultra…lter,
(a) » (b) ) a1 » b1 in S1. S1 associate implies that there exists some
u1 2 U (S1) µ U (R1) such that a1u1 = b1. Observe that in our ultraproduct,
(u1; 0; 0; :::) 2 U(S) and (a) (u1; 0; 0; :::) = (b). Contradiction.

Corollary 57 Let F be a principal ultra…lter whose generator, A, is a set
of …nte cardinality.

Q
Ri=F is superassociate , Rj is superassociate for

every j 2 A.

Proof. The proof of Theorem 56 can be easily generalized to show this
result.

As Theorem 56 suggests, even if we consider more general ultra…lters than
principal ultra…lters, we see that an ultraproduct being superassociate does
not imply that each constituent ring need be superassociate. The following
example illustrates this.

Example 58 Let I = N and let our ultra…lter, F , on I be the ultra…lter
containing the …lter D = ffn; n+ 1; n+ 2; :::g j n 2 Ng. Let R1 be any non-
superassociate ring and let Ri be any non-trivial …eld for i 6= 1. It can be
observed that

Q
Ri=F is superassociate since every element of F is of in…nite

cardinality.
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[1] A.G. Aḡargün, D.D. Anderson, and S. Valdes-Leon, Unique factorization

rings with zero divisors, Comm. Algebra 27 (1999), 1967–1974.

17
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